index $ \def \hieruit {\quad \Longrightarrow \quad} \def \met {\quad \mbox{with} \quad} \def \EN {\quad \mbox{and} \quad} \def \SP {\quad ; \quad} \def \half {\frac{1}{2}} $
![]() | $$ \frac{F}{F_0} = \frac{\Delta T_0}{\Delta T} = \sqrt{\frac{m}{m_0}} = 1+\frac{H_i}{2}(T-T_0) $$ The theory of linear Sensible Densities must be adapted a little bit in order to make physical applications possible (see Dimensions check): $$ P(\tau) = C\tau+D \hieruit \int_{0}^{T_k/\Delta} (C \tau + D ) \, d\tau = \half C \left(\frac{T_k}{\Delta}\right)^2 + D \left(\frac{T_k}{\Delta}\right) = k \\ \frac{T_k}{\Delta} = \sqrt{(D/C)^2 + 2 k/C} - D/C = \sqrt{1/4 + 2 k} - 1/2 = \tau_k \\ \hieruit C=1 \SP D=\frac{1}{2} \SP P(\tau) = \tau + \frac{1}{2} \\ 1+\frac{H_i}{2}(T-T_0) = 2 P\left(\frac{H_i}{4}(T-T_0)\right) $$ |
It follows that for $(T_0-T)=2/H_i=(T_0-A)$ - near the creation timestamp Alpha - the orbital clock frequency becomes zero. This means that the age $(T_0-A)$ cannot be measured exactly with one of our clocks, neither with an orbital one or with an atomic one.
Let Milne's Formula be the next and the last one to derive. $$ 1+\half H_i (T-T_0) = e^{H_i/2.(t-t_0)} \\ \boxed{ \half H_i(t-t_0) = \ln\left[1+\half H_i (T-T_0)\right] } $$ The old formula can be recovered with $\,(T_0-A) = 2/H_i\,$ or rather $\,\half H_i = 1/(T_0-A)\,$, giving: $$ t-t_0 = (T_0-A)\ln\left[\frac{T_0-A}{T_0-A} + \frac{T-T_0}{T_0-A}\right] = (T_0-A)\ln\left(\frac{T-A}{T_0-A}\right) $$ | ![]() |