Inverse Fourier transform method

$ \def \sinc {\operatorname{sinc}} \def \slechts {\quad \Longleftrightarrow \quad} \def \half {\frac{1}{2}} $ We have found that the Fourier transform of a block function is a $\,\sinc\,$ and the Fourier transform of a $\,\sinc\,$ is a block function. This is, of course, no coincidence. Hat functions are symmetric, therefore the Fourier integral and the inverse thereof are: $$ \int_{-\infty}^{+\infty} p(x) \cos(y x) \,dx = A(y) \slechts \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(y) \cos(x y) \,dy = p(x) $$ So if the Fourier integral of a hat function $\,p(x)\,$ is $\,A(y)\,$, then the Fourier integral of the hat function $\,A(x)\,$ is $\,2\pi\,p(y)\,$. Let's check it at hand of functions in previous subsections: $$ p(x) = \frac{1}{\sigma} \sinc\left(\frac{\pi}{\sigma} x\right) \slechts A(y) = \left\{ \begin{array}{lll} 0 & \mbox{for} & y < -\pi/\sigma \\ 1 & \mbox{for} & -\pi/\sigma < y < +\pi/\sigma \\ 0 & \mbox{for} & +\pi/\sigma < y \end{array} \right. $$ $$ p(x) = \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -\half \sigma \\ 1/\sigma & \mbox{for} & -\half\sigma \le x \le +\half\sigma \\ 0 & \mbox{for} & +\half \sigma \le x \end{array} \right. \slechts A(y) = \sinc(\half y \sigma) $$ Modify the latter formulas by the method of careful substitution. Three steps can be distinguished in this procedure: (1) adjust proper spread, (2) adjust proper norm, (3) what's in a name? Okay, let's just do it. Start with adjusting proper spread and let $\,\sigma/2 \rightarrow \pi/\sigma\,$: $$ p(x) = \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -\pi/\sigma \\ \sigma/(2\pi) & \mbox{for} & -\pi/\sigma \le x \le +\pi/\sigma \\ 0 & \mbox{for} & +\pi/\sigma \le x \end{array} \right. \slechts A(y) = \sinc(y \pi/\sigma) $$ Now adjust proper norm by multipling both right hand sides with $\,2\pi/\sigma\,$: $$ p(x) = \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -\pi/\sigma \\ 1 & \mbox{for} & -\pi/\sigma \le x \le +\pi/\sigma \\ 0 & \mbox{for} & +\pi/\sigma \le x \end{array} \right. \slechts A(y) = 2\pi \times \frac{1}{\sigma} \sinc(y \pi/\sigma) $$ At last, what's in a name? By $\,x \leftrightarrow y\,$ and $\,p \leftrightarrow A\,$, where, according to the inverse Fourier transform method, the factor $(2\pi)$ must be discarded: $$ p(x) = \frac{1}{\sigma} \sinc\left(\frac{\pi}{\sigma} x\right) \slechts A(y) = \left\{ \begin{array}{lll} 0 & \mbox{for} & y < -\pi/\sigma \\ 1 & \mbox{for} & -\pi/\sigma < y < +\pi/\sigma \\ 0 & \mbox{for} & +\pi/\sigma < y \end{array} \right. $$ Quod Erat Demonstrandum / Quite Easily Done.
Slightly more interesting is to apply the method for obtaining a new result, instead of reproducing an old one. Copy and paste from the subsection Comb of Triangles: $$ p(x) = \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -\sigma \\ (\sigma+x)/\sigma^2 & \mbox{for} & -\sigma \le x \le 0 \\ (\sigma-x)/\sigma^2 & \mbox{for} & 0 \le x \le +\sigma \\ 0 & \mbox{for} & +\sigma \le x \end{array} \right. \slechts A(y) = \sinc^2(\half y \sigma) $$ Modify the latter formulas by the method of careful substitution. Adjust proper spread first and let $\,\sigma/2 \rightarrow \pi/\sigma\,$ again: $$ p(x) = \frac{\sigma}{2\pi} \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -2\pi/\sigma \\ 1+x \sigma/(2\pi) & \mbox{for} & -2\pi/\sigma \le x \le 0 \\ 1-x \sigma/(2\pi) & \mbox{for} & 0 \le x \le +2\pi/\sigma \\ 0 & \mbox{for} & +2\pi/\sigma \le x \end{array} \right. \slechts A(y) = \sinc^2(y \pi/\sigma) $$ Now adjust proper norm by multipling both right hand sides with $\,2\pi/\sigma\,$: $$ p(x) = \left\{ \begin{array}{lll} 0 & \mbox{for} & x \le -2\pi/\sigma \\ 1+x\sigma/(2\pi) & \mbox{for} & -2\pi/\sigma \le x \le 0 \\ 1-x\sigma/(2\pi) & \mbox{for} & 0 \le x \le +2\pi/\sigma \\ 0 & \mbox{for} & +2\pi/\sigma \le x \end{array} \right. \slechts A(y) = \frac{2\pi}{\sigma}\sinc^2(y \pi/\sigma) $$ Now in the space domain $\,p(0) = 1\,$, which is the same as, in the Fourier domain: $$ \frac{2\pi}{\sigma} \int_{-\infty}^{+\infty} \sinc^2(y \pi/\sigma) \, dy = 2\, \int_{-\infty}^{+\infty} \sinc^2(y \pi/\sigma) \, d(y \pi/\sigma) = 2\,\pi $$ At last, what's in a name? By $\,x \leftrightarrow y\,$ and $\,p \leftrightarrow A\,$, where, according to the inverse Fourier transform method, the factor $(2\pi)$ must be discarded: $$ p(x) = \frac{1}{\sigma} \left[\frac{\sin(\pi/\sigma\, .\,x)}{\pi/\sigma\, .\,x}\right]^2 = \frac{1}{\sigma} \sinc^2\left(\frac{\pi}{\sigma} x\right) $$ $$ \slechts A(y) = \left\{ \begin{array}{lll} 0 & \mbox{for} & y \le -2\pi/\sigma \\ 1+y\sigma/(2\pi) & \mbox{for} & -2\pi/\sigma \le y \le 0 \\ 1-y\sigma/(2\pi) & \mbox{for} & 0 \le y \le +2\pi/\sigma \\ 0 & \mbox{for} & +2\pi/\sigma \le y \end{array} \right. $$ Resulting in a Comb of Squared Sinc functions that we haven't seen before: $$ \frac{\Delta}{\sigma} \sum_{L=-\infty}^{+\infty} \sinc^2\left(\frac{\pi}{\sigma}\left[x-L\Delta\right]\right) = 1 + \sum_{k=1}^\infty A(k\omega\sigma)\,\cos(k\omega x) $$

So what we have now is the rectangle and the sinc function, the triangle and the sinc squared function. We also have a Cauchy distribution and exponential decay: $$ p(x) = \frac{\sigma/\pi}{\sigma^2 + x^2} \slechts A(y) = e^{-|y|\sigma} $$ The absolute value is needed because we must have a hat shape and at the same time prevent an explosion for negative $\,y\,$. The other way around; adjust proper spread first. For an exponential decay that is $\,\exp(-|y|/\sigma)\,$, where $\,\sigma\,$ is the decay rate. Therefore substitute $\,\sigma \rightarrow 1/\sigma\,$, resulting in: $$ p(x) = \frac{\sigma/\pi}{1 + (x\sigma)^2} \slechts A(y) = e^{-|y|/\sigma} $$ Now adjust proper norm by multipling both right hand sides with $\,\pi/\sigma\,$: $$ p(x) = \frac{1}{1 + (x\sigma)^2} \slechts A(y) = 2\pi \times \frac{e^{-|y|/\sigma}}{2\sigma} $$ At last, what's in a name? By $\,x \leftrightarrow y\,$ and $\,p \leftrightarrow A\,$, where, according to the inverse Fourier transform method, the factor $(2\pi)$ must be discarded: $$ p(x) = \frac{e^{-|x|/\sigma}}{2\sigma} \slechts A(y) = \frac{1}{1 + (y\sigma)^2} $$ Resulting in a Comb of Exponential Decays that we haven't seen before: $$ \frac{\Delta}{2\sigma} \sum_{L=-\infty}^{+\infty} e^{-|x-L\Delta|/\sigma} = 1 + \sum_{k=1}^\infty \frac{\cos(k\omega x)}{1 + (k\omega\sigma)^2} $$ There are a hundred ways to Rome, though. We could have found this result in a far more direct way with integrals from the subsection Find more Fourier integrals.
Working the other way around - that is: starting with exponential decays and with the inverse Fourier transform method find the Cauchy distribution - we could have avoided the complex analysis solution employed in the subsection Comb of Cauchy Distributions.

Last but not least, here is our beloved Gaussian: $$ p(x) = \frac{1}{\sigma\sqrt{2\pi}}\, e^{-\half (x/\sigma)^2} \slechts A(y) = e^{-\half (y\sigma)^2} $$ Proper spread with $\,\sigma \rightarrow 1/\sigma\,$: $$ p(x) = \frac{\sigma}{\sqrt{2\pi}}\, e^{-\half (x\sigma)^2} \slechts A(y) = e^{-\half (y/\sigma)^2} $$ Proper norm with times $\,\sqrt(2\pi)/\sigma\,$: $$ p(x) = e^{-\half (x\sigma)^2} \slechts A(y) = \frac{\sqrt{2\pi}}{\sigma}\, e^{-\half (y/\sigma)^2} = 2\pi \times \frac{1}{\sigma\sqrt{2\pi}}\, e^{-\half (y/\sigma)^2} $$ At last, what's in a name? By $\,x \leftrightarrow y\,$ and $\,p \leftrightarrow A\,$, where, according to the inverse Fourier transform method, the factor $(2\pi)$ must be discarded: $$ p(x) = \frac{1}{\sigma\sqrt{2\pi}}\, e^{-\half (x/\sigma)^2} \slechts A(y) = e^{-\half (y\sigma)^2} $$ Herewith, everything considered so far has been covered: Gaussian $\leftrightarrow$ itself, Cauchy $\leftrightarrow$ Decay, Block $\leftrightarrow$ Shannon, Triangle $\leftrightarrow$ Squared.