Find more Fourier integrals

$ \def \half {\frac{1}{2}} \def \hieruit {\quad \Longrightarrow \quad} \def \sinc {\operatorname{sinc}} $ High on the wish list of people who find Laplace transforms interesting is the Laplace transform of a sine function: $$ \int_0^{\infty} e^{-s x} \sin(x) \, dx = \mbox{??} $$ We proceed by integrating by parts: $$ \int_0^\infty e^{-s x} \sin(x) \, dx = \int_0^\infty e^{-s x} d\left[ - \cos(x) \right] = $$ $$ - \left[ e^{-s x} \cos(x) \right]_0^\infty + \int_0^\infty \cos(x) \, d \left[ e^{-s x} \right] = 1 - s \int_0^\infty e^{-s x} \cos(x) \, dx $$ Feels good. Let's do it again: $$ 1 - s \int_0^\infty e^{-s x} \cos(x) \, dx = 1 - s \int_0^\infty e^{-s x} d \left[ \sin(x) \right] = $$ $$ 1 - s \left[ e^{-s x} \sin(x) \right]_0^\infty + s \, \int_0^\infty \sin(x) \, d \left[ e^{-s x} \right] = $$ $$ 1 - s^2 \, \int_0^\infty e^{-s x} \sin(x) \, d x = \int_0^\infty e^{-s x} \sin(x) \, d x \hieruit $$ Theorem. Laplace transform of sine: $$ \int_0^\infty e^{-s x} \sin(x) \, dx = \frac{1}{1 + s^2} $$ Theorem. Laplace transform of cosine: $$ \int_0^\infty e^{-s x} \cos(x) \, dx = \frac{s}{1 + s^2} $$ Proof. $$ \int_0^\infty e^{-s x} \cos(x) \, dx = \int_0^\infty e^{-s x} \, d \sin(x) = \left[e^{-s x}\sin(x)\right]_0^\infty - \int_0^\infty \sin(x)\,d e^{-s x} $$ $$ = 0 + s \int_0^\infty e^{-s x} \sin(x) \, dx = \frac{s}{1 + s^2} $$ Theorem. Fourier integral of (normed) decay function: $$ \int_{-\infty}^{+\infty} \half e^{-|x|} \cos(y x) \,dx = \frac{1}{1 + y^2} $$ Proof. $$ \int_0^\infty e^{-s x} \cos(x) \,dx = \frac{s}{1 + s^2} \hieruit \int_{-\infty}^{+\infty} \half e^{-|x|} \cos(y x) \,dx = $$ $$ 1/y \, \int_0^\infty e^{-(y x)/y} \cos(y x) \,d(y x) = 1/y \, \frac{1/y}{1 + (1/y)^2} = \frac{1}{1 + y^2} $$ Theorem. Half area of sinc function: $$ \int_0^\infty \sinc(x)\,dx = \frac{\pi}{2} \hieruit \mbox{normed} \: = \frac{1}{\pi} \sinc(x) $$ Proof. $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, dx \right] \, ds = \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, ds \right] \, dx $$ Because iterated limits in the real world do always commute. Now we have a left hand side and a right hand side. The left hand side, according to the above, is equal to: $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, dx \right] \, ds = \int_0^\infty \frac{ds}{1+s^2} = \left[ \arctan(s) \right]_0^\infty = \frac{\pi}{2} $$ The right hand side, on the other hand: $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, ds \right] \, dx = \int_0^\infty \sin(x) \left[ \int_0^\infty e^{-s x} \, ds \right] \, dx = $$ $$ \int_0^\infty \sin(x) \frac{1}{x} \left[ - e^{-y} \right]_0^\infty \, dx = \int_0^\infty \frac{\sin(x)}{x} \, dx \qquad \mbox{Q.E.D.} $$ Theorem. Fourier integral of sinc function: $$ \int_{-\infty}^{+\infty} \sinc(x) \cos(y x) \,dx = A(y) $$ Where: $$ A(y) = \left\{ \begin{array}{lll} 0 & \mbox{for} & y < -1 \\ \pi & \mbox{for} & -1 < y < +1 \\ 0 & \mbox{for} & +1 < y \end{array} \right. $$ Proof. $$ 2\,\sin(\alpha)\cos(\beta) = \sin(\alpha+\beta) + \sin(\alpha-\beta) \hieruit $$ $$ \int_{-\infty}^{+\infty} \frac{\sin(x)\cos(y x)}{x} \,dx = \half \int_{-\infty}^{+\infty} \frac{\sin(x+y x)}{x} \,dx + \half \int_{-\infty}^{+\infty} \frac{\sin(x-y x)}{x} \,dx $$ $$ = \half \int_{-\infty}^{+\infty} \frac{\sin((1+y)x)}{(1+y)x} (1+y) \,dx + \half \int_{-\infty}^{+\infty} \frac{\sin((1-y)x)}{(1-y)x} (1-y) \,dx $$ Now let $u = (1+y)x$ and $v = (1-y)x$ . Then: $$ \int_{-\infty}^{+\infty} \frac{\sin((1+y)x)}{(1+y)x} (1+y) \,dx = \left\{ \begin{array}{ll} + \int_{-\infty}^{+\infty} \sinc(u)\,du & \mbox{for} \quad 1+y > 0 \\ - \int_{-\infty}^{+\infty} \sinc(u)\,du & \mbox{for} \quad 1+y < 0 \end{array} \right. $$ $$ \int_{-\infty}^{+\infty} \frac{\sin((1-y)x)}{(1-y)x} (1-y) \,dx = \left\{ \begin{array}{ll} + \int_{-\infty}^{+\infty} \sinc(v)\,dv & \mbox{for} \quad 1-y > 0 \\ - \int_{-\infty}^{+\infty} \sinc(v)\,dv & \mbox{for} \quad 1-y < 0 \end{array} \right. $$ Where $\int_{-\infty}^{+\infty} \sinc(u)\,du = 2\,\int_0^\infty \sinc(v)\,dv = 2.\half\pi = \pi$. Summarizing:

  $\int_{-\infty}^{+\infty} \sinc(u)\,du$     $\int_{-\infty}^{+\infty} \sinc(v)\,dv$     $\int_{-\infty}^{+\infty} \sinc(x) \cos(y x) \,dx$  
$y < -1$ $-\pi$ $+\pi$$0$
  $-1 < y < +1$   $+\pi$ $+\pi$$\pi$
$+1 < y$ $+\pi$ $-\pi$$0$

Theorem. Parceval's theorem for sinc function: $$ \int_{-\infty}^{+\infty} \sinc^2(x)\,dx = \pi \hieruit \mbox{normed} \: = \frac{1}{\pi} \sinc^2(x) $$ Proof. The integral of the square of the Fourier transform of a function is equal to the integral of the square of the function itself: $$ \int_{-\infty}^{+\infty} f^2(x)\, dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A^2(y)\, dy $$ $$ \hieruit \int_{-\infty}^{+\infty} \sinc^2(x)\,dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A^2(y)\,dy = \frac{1}{2\pi} \int_{-1}^{+1} \pi^2\,dx = \frac{2\pi^2}{2\pi} = \pi $$ Because: $$ A(y) = \left\{ \begin{array}{lll} 0 & \mbox{for} & y < -1 \\ \pi & \mbox{for} & -1 < y < +1 \\ 0 & \mbox{for} & +1 < y \end{array} \right. \qquad \mbox{Q.E.D.} $$