Commutator of Vector Fields

My somewhat rusty knowledge says that: $$ \left[A,B\right] = A B - B A = \left( x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right) \left( x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}\right)- \left( x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}\right) \left( x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right) $$ The following basic formula from Operator Calculus will be employed repeatedly: $$ \frac{d}{dx} f(x) = f(x) \frac{d}{dx} + \frac{df}{dx} $$ Evaluate $(A B)$: $$ x\frac{\partial}{\partial y} x\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} y\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} x\frac{\partial}{\partial x} - y\frac{\partial}{\partial x} y\frac{\partial}{\partial y} =\\ x\frac{\partial}{\partial y} x\frac{\partial}{\partial x} + \left[ y\frac{\partial}{\partial y} x\frac{\partial}{\partial y} + x\left( \frac{\partial y}{\partial y} \right) \frac{\partial}{\partial y} \right] - \left[ x\frac{\partial}{\partial x} y\frac{\partial}{\partial x} + y\left( \frac{\partial x}{\partial x} \right) \frac{\partial}{\partial x} \right] - y\frac{\partial}{\partial x} y\frac{\partial}{\partial y} =\\ x\frac{\partial}{\partial y} x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} x\frac{\partial}{\partial y} + x\frac{\partial}{\partial y} - x\frac{\partial}{\partial x} y\frac{\partial}{\partial x} - y\frac{\partial}{\partial x} - y\frac{\partial}{\partial x} y\frac{\partial}{\partial y} $$ Evaluate $(B A)$: $$ x\frac{\partial}{\partial x} x\frac{\partial}{\partial y} - x\frac{\partial}{\partial x} y\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} x\frac{\partial}{\partial y} - y\frac{\partial}{\partial y} y\frac{\partial}{\partial x} =\\ \left[x\frac{\partial}{\partial y} x\frac{\partial}{\partial x} + x\left(\frac{\partial x}{\partial x}\right)\frac{\partial}{\partial y}\right] - x\frac{\partial}{\partial x} y\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} x\frac{\partial}{\partial y} - \left[y\frac{\partial}{\partial x} y\frac{\partial}{\partial y} + y\left(\frac{\partial y}{\partial y}\right)\frac{\partial}{\partial x}\right] =\\ x\frac{\partial}{\partial y} x\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - x\frac{\partial}{\partial x} y\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} y\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} $$ We see that $A B = B A$ . Thus the commutator is zero.
This must be so because rotations and scaling around the origin in the plane commute.
More of the mathematics can be found in: Lie Groups and Variances .