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Operator Calculus

Operator Calculus is a mathematical technique which is employed in physics (i.e.
quantum mechanics), without any serious concern about its validity. When it
comes to theoretical mathematics, however, the same technique meets extremely
cautious formulations. It almost seems as if Operator Calculus is like kind of
an illegal activity, for the "real” mathematician at least.

Operators can be seen as mathematical devices that operate on functions.
Hence, actually, operators are functions of functions. Concerning the kind of
operations that are involved, differentiation and integration will be considered
in the first place.

Let 1 be a function. Then the operation (d/dx) in diy/dz is an example of
a (differential) operator. But also multiplication with another function is an
operator, such as (f) in fi. Now we have the following obvious definitions for
equality, sums and products of operators «, 3 and (soon also) 7, when applied
on arbitrary functions ¢ and ¢ :

[a=p8] = [ap=B¢] 5 (@+B)Y = ap+8¢ 5 (af)Y = a(BY)

An operator is called linear if the following two requirements are fulfilled. Here
let A be a scalar. Strictly speaking, the second requirement could have been
derived from the first:

A+ o) =ap+adp ; allp) = May)

In the sequel, all of our utterances will be restricted to linear operators. It is a
simple excercise to prove the following Rules of Arithmetic:

a+fB=0B+a ; (a+B)+v=a+(B+7)
(aB)y=a(By) 5 (a+B)y=ay+py
Y+ pB)=yat+y8 ; ar=Xa

The rules for manipulating linear operators are indeed very much resemblant to
the arithmetic rules for ordinary numbers. With one single exception. And this
is actually the only thing one should keep in mind, in practice, when performing
arithmetic with (linear) operators. The commutative law, namely, is NOT valid:

aff # fa



For this reason, the commutator of two operators is defined as:

[aaﬂ] = aﬁ_ﬂa

The commutator of two operators, in general, will not be zero. Furthermore we
define an inverse and a (repeatedly) composite operator:

[B=a'] = [af=1] ; o = a..a (n terms)

Let’s become somewhat more specific. The product rule for differentiation reads:

(fo) =f'ap+ fy'. Or:

d df d

() = () (e

The function v, being entirely arbitrary, provides not a shred of information.
Therefore it would be desirable to leave it out. Working conditions which en-
able us to do so have been created by the above operator-definitions. It is
quite clear, namely, that it is always possible to arrive at an expression of the
form: a1 = P, which makes it possible to leave out 1. Yet this is, for true
mathematicians, a tender spot: because a single d/dz cannot possibly ”mean
anything”. Mainstream mathematics obviously has some problems with a deed

of real abstraction, like this one:

d df d
o Tt

The (non-commutative) law for composing a differential and a product-operator

is derived herefrom:
d df

d d
[E,f] |
After division by f the earlier formula can also be written as folllows:

. d d f
14 ,_a ]
! d:cf dx * f
The fraction f’/f reminds of the derivative of log(f). If we put f’/f = g then
log(f) = [ g dz, hence f = exp([ gdzx) . Let’s replace the name g by the name

f again. At last, exchange the left and the right side. Then the end-result is:

d _ —ffda:d +ffda:
d:v+fie dxe

It is expected from the reader that he or she transfers this formula to his or her
non-volatile memory, so to speak. It is an extremely useful result, namely, as
will be demonstrated now at hand of three examples.



Differential Equations

Operator Calculus can be applied for the purpose of finding solutions of ordinary
linear Differential Equations. Three examples will be given.

Example 1

Solve an ordinary second order linear differential equation in y(x) with constant
coeflicients:
ay” +by +cy=0

Operator Calculus enables us to abstract as much as possible from the solution

y(z) itself:
AN + b d +
al|l— —+c
dz dz

What we are going to do next is, don’t be surprised: decompose into factors.
We are (almost) forced to do so, because the operator (d/dz) and the constants
a, b and ¢ mutually behave as if they were ordinary numbers: the commutator
of a differentiation and a constant is zero. Remember that the commutative law
for (linear) operators is the only thing which could be deviant from common
algebra with ordinary numbers.

IO RIORCROICES

Where A1 and A\ are roots of the so-called characteristic equation:

y(z) =0

aXl+bA+¢=0

Herewith, the differential equation can be rewritten as:

() (55w

We are going to employ now the ”extremely useful formula” from the previous
secion:

)\LQw i e 7)\1,21

dz
Giving, at last, for the O.D.E. the equivalent expression:

Alzi e*>\11‘e>\21’i €7>\2wy(1’) — O

dx dx

€



Systematic integration is possible now:

d
efAlme)\zmd_ esza:y(m) — Cl : eszzy(x) _ Cl /e(>\1*)\2)m dr
xr

As has been said, A can be solved from a)? 4 b\ + ¢ = 0, a quadratic equation
with discriminant: D = b% — 4ac. Two different cases are to be distinguished.

(a) )\1 75 )\2: ( )
)\17}\2 x

(/\17/\2):1,‘ d — € C

/e HBYEDY e

Giving as a solution:

y(r) = C1eMT 4 Coet2® C1, Cy arbitrary

/daczx

y(r) = e [C1.z + C5] C4, Cy arbitrary

Giving as a solution:

The above derivation provides a sharp contrast with the heuristics in official
documents about differential equations. What makes it so special is the fact
that this method leads to the solution in a completely natural way. It is not
necessary, at all, to make some kind of miraculous assumption about the nature
of the solution. In particular, there is nothing mysterious about the special case
A1 = X2. Nothing comes out of the blue sky.

Example 2

Solve the differential equation by Euler in y(z), a and b constant:

1!

22y +azy’ +by =0

Again, we will abstract as much as possible from the solution y(z) :

d\’ d
2
— —+b
l:c <dm> T dz *
Employ the commutator [d/dz,z] = 1 for changing x.d/dz into d/dz.x — 1

and herewith z.(x.d/dz).d/dz in z.d/dx.x.d/dx — x.d/dz. This is necessary for
rewriting the O.D.E. a little bit, namely as follows:

[(m%)z—l—(a—l) (:%) +b

y(z) =0

y=20




Let’s try to decompose into factors:

() a0 (o) = (v o0 ) (e 0

Where A1 and Ay are roots of the characteristic equation:
M4 (a—DA+b=0

Herewith, the differential equation by Euler can be rewritten as:

() (e -22) i o
(4-2)e(2- 2o

We are going to employ again the formula, as memorized from the previous
section: d ) . J N
1,2 1,2
B I LAY e
dx x dx
— ekl,glog(z) i e*)\lyglog(m) — x}q}zi x*)\l’g
dx dx

Giving for the O.D.E. in its final form:

d d
)\1 —>\1 )\2 _)\2 j—
"t — T traxt—x z)=0
dx dx y(@)
Systematic integration is possible now:

d
x*’\lx.:ﬁ@d— rMy(x)=C1 5 x My(z) =0y /m’\lf’\rl dx
x

As has been said, A can be solved from A2+ (a—1)\+b = 0, a quadratic equation
with discriminant: D = (a — 1) — 4b. Two different cases are distinguished.

(a) )\1 76 )\22
M—da—1 g gt C
/I LD VIS W

Giving as a solution:

y(r) = Ciz™ + Coa™ Cq, Cy arbitrary

/xfl dx = log(x)
Giving as a solution:
y(r) = :r’\[Cl.log(ac) + () C1,C5 arbitrary

Again, it is not necessary to make special assumptions about the shape of the
solution. The result is obtained in a completely natural way, for the general as
well as for the special case.



Example 3

As a last example, we solve the following differential equation:

d*p dp
r—= +(2—vor)—=— — 2vgp =0

dr? ( 0 )dr op
Here: p = unknown function (kind of pressure), = radial distance (to the
sun), vog = scaled velocity (of the solar wind). This equation arises with the
simplification of a far more complicated problem: a mathematical model for
calculating the anomalous component of cosmic radiation in the heliosphere. So

far so good. Decompose into factors:
T 4 + 2\ (L v =0
dr r dr 0)P=

1d d
—r2evr e

Use the Basic Formula:

r— —vor 0
r2 dr dr b
Systematical integration gives:

d _, e vor

—e VTp=C

dr b T2
—VoT

p(r) = C’levor/ 5—dr + Cae™"

r

Thus we have the following elementary solutions:

—VoT
pi(r) :ew/e 5dr

r

par) = e

The integral can be worked out further with help of partial integration. Let

t = —vor in:
t t t
e e e
—dt =——+ [ —dt
12 t / t

Herewith for the first solution:
l voT -
= — Fi(—
p1(r) o +e i(—vor)

Here Fi is the so-called exponential integral, for which it is known that it cannot

be written in a closed form:
Tt
Bi(z) = / %dt

— 00

For those who don’t believe, the outcome can always be verified with help of a
Computer Algebra System. We used the CAS package MAPLE for doing this:



p:=1/(vO*r)+exp (vO*r)*Ei (-vO*r) ;

r*diff (diff (p,r),r)+(2-vO*r)*diff (p,r)-2*%v0*p;
simplify(");

quit;

Unnecessary to remark that the outcome, indeed, becomes zero, as expected.

Laplace and Statistics

It is known from quantum mechanics that the law of conservation of momentum
can be derived from translation symmetry. If it is possible to move around
the physical system in space without its properties being altered, then in that
case conservation of momentum is guaranteed. However, the foundation of this
theorem is purely mathematical, and can be understood as follows. The series
expansion of a function f(z + ) around z is:

o

0 .l k
e =350 = [ (e ) o
k=0

k=0

In the expression between square brackets the series expansion of the exponential
function e® is recognized. Therefore we can write, symbolically:

fla+€) = e f(a)

With this formula in mind, consider an arbitrary convolution-integral:

+o0
/ WE)d(r — ) de

—0oQ

Convolution integrals do frequently occur. With a linear system, the response
at a disturbance is the convolution-integral of the disturbance with the so-called
unity-response. The unity-response is the way in which the system reacts upon
the simplest of all disturbances, that is a steep peak of very short duration at
time zero, a ”delta-function”. Convolution integrals can be rewritten with help
of the operator-expression for f(z — &) as follows:

+oo 4
[ nee st o)

The integral in this expression should be well known to us. Quite ”by incidence”,
namely, it is just the (double-sided) Laplace transformation:

+oo
H(p) = / h(E)e =P dt

—00



It seems that Laplace’s integral shows up quite spontaneously with elementary
considerations about convolution-integrals in combination with our Operator
Calculus. The formula for the convolution-integral can now be written as:

d

H(—) ¢(x
() 6(a)
The fact that Laplace transforms are a powerful means for solving differential
equations can now be understood without much effort. Suppose we have a linear

inhomogeneous differential equation. In general it has the form:
D( —

( dz

Then with help of Operator Calculus we can immediately write the solution as:

1
¢(z) = f(z)
D( )
Put H(d/dx) = 1/D(d/dz) , then the excercise becomes: find the inverse
Laplace transform of H(p). Let this inverse function be called h(z). Finding
the solution then follows entirely the abovementioned pattern:

o(x) = / RO fla— o) de

—0o0

So far so good. Investigate the Laplace transform of exp(—put?):

+oo +oo
2 2 2 ™ 2
/ e Ple M dt =/ e H dy.eP /M = \/jep /4m
—o0 —o0 H

with help of: & = ¢+ p/2u. Laplace transform H and inverse Laplace transform
h are mutually related as follows, after replacing 1/4u by 1/202:

2 2 1
H(p)=e3? = ht)= e t7/20°
oV 2T

A convolution integral with the normal distribution A(t) as a kernel can thus be
written, with the help of Operator Calculus, as:

+oo 1.2 d2
/ h(E)d(a — €)de = 37" 7 ()

—oo
The physical meaning of this is that the operator ea:p(%a2 j—;) ”smears out” the
function ¢(z) over domains with size of the order o.
So-called ”moment generating functions” play a role in Statistics. They are the
expectation values of the exponential function exp(pt); with other words: they



are Laplace transforms of probability densities. In a handbook about Statistics
it is read as follows, again:

1 Feo —(x — p)?
M(t)zam/ exp [%} et dx =

eht+3o?t?  ptoo

_(,ilj — K 2— 0-2t)2:| dp — eﬂt+%‘72t2
20

erp
oV 2w oo {

The corresponding normal ”fuzzying”-operator is in general given by:

4
dzr

1.2 d2

d 1 1.2d2
):ep‘HJr?U 1o2 — ¢Mids o2

da2

M(

The outcome is immediately applicable to the following problem. Consider the
(partial differential)equation for diffusion of heat in space and time:

or _ 0T
ot Ox?
Rewrite in the first place:
)\QT = )\aa—2T
ot~ T 0x2

As a next step we exponentiate at both sides the operator in place:

2 2
NO/Ot . Aad? /02

At both sides are operator-expressions which can be converted into classical
mathematics with the acquired knowledge:

+oo

T(a,t+ ) = / W(ET(x — & 1) de

— 00

Where 262 = Xa. Therefore:

]. 2 2
h(t) = et/
oV 2

Now exchange t and A, and substitute A = 0. Then we find, while travelling via
a very short route, the solution of the equation for thermal diffusion:

+
T(I,t) :/ Oo# 6752/(40415) T(I - 570) dé-
—oo VAmat

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.



