On solving a Cosmic Ray
equation

Introduction

In the theory of cosmic ray modulation in the heliosphere, i.e. the region around
the sun that is dominated by the solar wind plasma (which itself represents
the expanding outer part of the sun’s atmosphere), there occurs the following
hydrodynamical version of a cosmic ray (CR) transport- or energy equation:

The quantities in this equation are:

p(F) = pressure or energy density of the cosmic rays
Usw = velocity of the solar wind

Ugr = drift velocity of the cosmic rays

ol = constant polytropic index of the cosmic ray gas

K = the diffusion tensor

The above equation describes the diffusion and drift of the cosmic ray par-
ticles in the interplanetary magnetic field and their convection and adiabatic
deceleration due to the expanding solar wind plasma. The pressure indicates
the cosmic ray intensity at a position 7. More about the physics of CR is found
in astronomical literature [?].

Analytical treatment
Using spherical polar coordinates
r=rcos¢psind ; y=rsingsinfd ; z=rcosf

one obtains the most convenient analytical formulation of the problem.
In all subsequent cases, the drift velocity ¥y, is zero and the velocity of the solar

wind is radial & constant: U5, = voé,. Hence the term —v(V - Us,) can be
evaluated as —yvoV - &, = —yvo(2/7).

Here comes a compilation of (fictive) one-dimensional analytical solutions of
the CR equation. It is remarked that this version of the theory actually matches
reasonably well with (parts of) the numerical solutions. So I have confidence
that both theory and code are correct, at last.

MODE=1: k=radial=r; vg=0

The Partial Differential Equation (P.D.E.) is reduced, for k equal to the scalar
r, and for vy equal to zero, to the following equation:

d dp dp
i SR, Yo A
drrdr+ dr 0

a2\ do
dr r drp_

Using a basic formula of Operator Calculus -+ f(z) = e~ J faydz et J f@)da
with exp([2/rdr) =r*

ii 2 i =0

r2ar') art T

The general solution is p = C'/r?. Boundary conditions are chosen spherically
symmetric: p(RI) =0 and p(RO) = 1. Then the solution is:
1/RI? —1/r?
p(r) = LR =L
1/RI? —1/RO

It has been seen that this solution agrees VERY well with the numerical values.

MODE=2: k =unity; vy =0

The P.D.E. is reduced, for k equal to the unity tensor, and for vg equal to zero, to
the Laplace equation in spherical coordinates. The boundary conditions are also
chosen spherically symmetric: p(RI) = 0 and p(RO) = 1. Then the solution is:

1/RI—1/r
pr) = b
1/RI —1/RO
Since it is well known that the potential field of a point source goes like 1/r.

It has been seen that this solution also agrees VERY well with the numerical
values.

MODE=3: k =radial =r

The P.D.E. is reduced to an ordinary differential equation:

d dp dp 2
—r— 2 — = — Zp=
derr +(Uo)dr M]Orp 0

Here vy = 0.5984 and v = 1.663151. This is a differential equation of type Fuler
in p(r), a and b constant:

r?p” + (a+ 1)rp’ +bp=0

Where a = 2 — vg ; b = —2~wvg. The general solution is, in case A\; # Ag :

p(r) = Cir™ + Cor™ C1, Cy arbitrary
A1,2 are the solutions of the characteristic equation:

N +ar+b=0

Substituting herein the numerical values of vy and ~y yields:

A1 = 0.8745031 ; Ao = —2.2761030
The constants C1 2 are determined by the boundary conditions, as before. The

result is:
rMR[M2 — pr2 RIM

~ ROMRI: — RO™RIM
Which also matches VERY well with the numerical solution.

p(r)

MODE=4: k=unity=1; y=0

If we assume that vg # 0, and specialize for 7 = 1, then CR reduces to the
following ordinary differential equation:

d?p dp 2
2 — — — —_n = 0
dr? + @/ vo)dr vy

The solution of this differential equation can be found again by employing Oper-
ator Calculus (which is kind of routine for me if T want to find ”exact” solutions):

i_{_z i, —0
dr r dr vo) p=

Using the basic formula £ + f(z) = o= J @) 4 ot S f@)de,

1d 2 vor d —voT 0
r.——r e’ —e =
r2dr dr p

Systematic integration gives:

d e*’l}or
—e Ty =C4
dr

r2

—voT

p(r) = Clevo’"/ € - dr + Cye™"

So there exist the following two elementary solutions:

—voT
pi(r) :evor/e ydr

r

p2<,’,) — e’UDT

The integral can be worked out further by partial integration, with ¢t = —vgr:
t t t
e e e
—dt = —— —dt
#2 r T / t
Giving for the first solution:

1
= e Bi(—
p1(r) o +e i(—wvor)

xT et
Pi(z) = / Cat
—o b
If you don’t believe this, you can substitute back and check out with MAPLE:
p:=1/(vO*r)+exp (vO*r)*Ei (-vO*r) ;
r*diff (diff(p,r),r)+(2-vO*r)*diff (p,r)-2*%v0*p;

simplify(");
quit;

Together with the boundary conditions, the solution finally becomes:

p(r) = p1(RI)pa(r) — pa(RI)p1(r)
p1(RI)p2(RO) — pa(RI)p1(RO)

Which in turn can be compared with numerical results. The latter is somewhat
difficult for two reasons: the exponential integral function Ei(x) is unknown
to Fortran, and the analytical result has a very steep gradient for the nominal
value of vg. The first problem can be adressed by invoking the NAG Fortran
Library: the exponential integral function Ei(x) is calculated by a function
S1I3AAF(X,IFAIL). The second problem can be adressed by lowering the value
of vy by a factor of 100.

MODE=5: k=unity=1; v=0

One more analytical solution of the CR equation can be constructed, resulting
in a total of 5 exact solutions so far.

If we assume that s is the unity tensor, vy # 0, and specialize for v = 0
instead of v = 1, then the CR Confusion (:-) P.D.E. reduces to the following
ordinary differential equation:

d’p dp
W + (2/7‘—’00)% :0

The solution of this differential equation can be found again by Operator Cal-

culus:
(2 \]do_
dr T vo drp_

Using the basic formula & + f(z) = ¢~ J f@)dz 4 et [f@dn

1 vor d 2 _—wvgor d
J— — —_ = O
(7"26 ar' € ar?

Systematic integration gives:

r2

p(r)zCl/e dr + Cs

The integral can be worked out as in the previous case, giving the solution,

apart from constants:
e’Uo’l‘
= — + Ei
p1(r) o i(vor)

If you don’t believe this, you can substitute back and check out with MAPLE:

p:=—exp(vO*r) / (vO*r)+Ei (vO*r) ;

diff (diff(p,r),r)+(2/r-v0)*diff (p,r);
simplify(");

quit;

Together with the boundary conditions, the solution finally becomes:

p1(RI) —pi(r)
T =
() = 2R = 1 (RO)
Which in turn can be compared with numerical results. It should be emphasized,

however, that the analytical, and hence also the numerical solution, is only
known for the case vg < 0. It is just zero in other cases!

Implementation

The five analytical solutions have been implemented for testing purposes as the
Fortran function EXAKT(R), where R is a radial distance from the origin. The
solution is selected by an index MODE, which is ranging from 1,..,5 and resides
in the common block /TEST/. MODE is also the index which determines what
coefficients to calculate in subroutine COEFFS. Needless to say that the choice
of the exact solution and the choice of the coefficients should lead to a match
between the exact and the numerical solutions respectively.

Under normal circumstances, COEFFS contains the entire physics of the
problem. Given the convection-difusion equation as such, together with its
boundary conditions and the geometry of the calculation domain, only the coef-
ficients are yet to be determined, by proper physical modelling. The relationship
between the parameters of COEFFS and the (test) physics of CR is as follows:

- Qry Ogy Oz
K= | Qzy Gyy Gy = symmetric

Qzy Qyz Azz

T Yy z
—V0— = Qg —’Uo—:ay —Vo— = Qy
T T T
2
—YVo— = Ao
T

With our test examples, the x tensor can be unity or radial. In the latter case,
the coefficients are calculated by:

CE2 y2 22
azm:7 ayy_T azz:7
Ty Yz 2T
Qay =7 Gyz=7"7 Oz =7

Numerical treatment

Leaving out non-essentials, the convection-diffusion equation for CR reads as
follows:
V(K Vp)+7-Vp+ap=0

The quantities in this equation are:

p(F) = pressure or energy density of the cosmic rays
K = the diffusion tensor

v = total velocity —¥Us, — YUqgr

ao = coefficient —y(V - Usy)

There are several factors which make the CR equation unmanageble by avail-
able packages, despite of the fact that Convection-Diffusion equations like this
are quite common in for example Fluid Dynamics. First there is the symmetric
tensor x, which as such could have been accounted for by a Structural Mechan-
ics program [?]. But in our case this tensor has to be combined with convection
terms. These convection terms, together with diffusion, could have been han-
dled by any common Computational Fluid Dynamics (CFD) code [?]. But to
my knowledge there exists no CFD code which implements a full tensor in its
diffusion modelling. Moreover, due to the geometry of the problem, the density
decreases with distance like 72 resulting - with the condition of mass conser-
vation - into a velocity field with non-vanishing divergence. It is essentially the
latter feature which also gives rise to a multiplicative ag term; this complicates
the CR model even further.

The above is not to say that something very special would be needed in order
to solve the problem. On the contrary. We shall see that very conventional Finite
Element and Finite Volume techniques are quite sufficient. The important thing,
however, is that they must be used in combination. This is a basic idea I have
been advertizing several times in the past, and will continue to do so in future.
The idea is called: ”Unified Numerical Approximations” [?].

Linear Tetrahedron

It is strongly advised to read about the 2-D case first, before proceeding to the
more difficult 3-D algebra. It’s in the appendix ” Triangle Isoparametrics”. Let’s
consider the simplest non-trivial finite element shape in 3-D, which is a linear
tetrahedron. Function behaviour is approximated inside such a tetrahedron by
a linear interpolation between the function values at the vertices, also called
nodal points. Let T be such a function, and z, ¥y, z coordinates, then:

T=Az+By+Cz+D

Where the constants A, B, C, D are yet to be determined. Substitute x = xj ,
Y =uyk , 2=z, with £ =0,1,2,3. Start with:

To = A.fL‘o + B.yo + C.Zo + D

Clearly, the first of these equations can already be used to eliminate the constant
D, once and forever:

T —Ty=A.(z —20) + B.(y — yo) + C.(z — 20)
Then the constants A , B, C' are determined by:

Ty — Ty = Ay — 20) + B-(y1 — yo) + C-(21 — 20)
T2 - TO = A(Ig - 1’0) + B(y2 - yo) + C(Zz - Zo)
T3 - TO = A(Ig - 1’0) + B(y3 - yo) + C(Zg - Zo)

Three equations with three unknowns. A solution can be found:

—1
A T1—To Y1—Yo 21— 20 Ty —1j
B|l=|22—20 ¥2—Y% 22—« Ty — Ty
C T3—To Y3 —Yo 23— 20 T35 — 1Ty

It is concluded that A, B, C' and hence (T — Tj) must be a linear expression in
the (Tk — To)l

T —To=&(Ty — To) +n.(Te — To) + ¢.(T3 — Tp)

Ty — Ty
=& n (]| T
T5 — 1o
See above:
T1 —Zo Y1 — Yo 21— R0 A
=[&n ¢]| x2—20 y2—wo 22— 20 B
T3—To Y3 —Yo 23— 20 C
See above:
A
=T -1y = [T—29 Y—Yo Z— 2o] B
C
Hence:
x—x9 = E&(21 — x0) + n.(2 — 20) + (. (25 — 20)
Y =90 =&(y1—yo) +n-(y2 — vo) +¢-(y3 — yo)
z— 20 =&.(21 — 20) +1.(22 — 20) + C.(23 — 20)
But also:

T — Tg = £(T1 — T()) + ’I].(Tz — To) + C(Tg — Tg)

Therefore the same expression holds for the function 7" as well as for the coor-
dinates x,y, z. This is called an isoparametric transformation. It is remarked
without proof that the local coordinates &,7,(within a tetrahedron can be in-
terpreted as sub-volumes, spanned by the vectors 7, — 7o and 7 — 75 where
7= (z,y,2) and k =1,2,3.
Reconsider the expression:

T Ty =¢&(Th — To) +n.(T2 — To) + ¢.(T3 — To)
Partial differentiation to £ , n , ¢ gives:
BT/(%:Tl—TO ; 8T/817:T2—T0 N aT/aC:Tg—Tg

Therefore: o7 oT oT
T=T(0 — — —
(Hfag 1, +Ca<
This is part of a Taylor series expansion around node (0). Such Taylor se-
ries expansions are very common in Finite Difference analysis. Now rewrite as
follows:

T=01-¢§-n—QTo+&T+nTe + (T3

Here the functions (1—-¢—n—(),&,n, ¢ are called the shape functions of a Finite
Element. Shape functions Ny have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

No=1-¢-n—-C ;3 Ni=& ;3 Na=n ; Nz=(
So we have two representations, which are allmost trivially equivalent:

T = TO + E(Tl — To) + U(TQ — Tg) + C(Tg — T()) : Finite Difference
T=(01-¢(—-n—=0)To+&T1+ 1T+ T;5 : Finite Element

What kind of terms can be discretized at the domain of a linear tetrahedron?
In the first place, the function T'(x,y, z) itself, of course. But one may also try
on the first order partial derivatives 97/d(x,y, z). We find:

oT/ox=A ; O0T/oy=B ; 0T/0z=C

Using the expressions which were found for A, B, C:

-1
T /ox T1—To Y1—Yo 21— 20 Ty — Ty
OT/0y | = | ®2—T0 Y2 — Yo %22 — %o Ty —Tj
oT'/0z T3—To Ys— Yo 23— 20 15 —Tj

It is seen from this formula that one must determine the inverse of the above
matrix first. Then add up the rows of the inverted matrix and provide the
sum with a minus sign, in order to find the coefficients belonging to Tg. The
result is a 3 x 4 Differentiation Matriz, which represents the gradient operator
9/9(x,y, z) for the function values Ty 123 at a linear tetrahedron.

Diffusion part

Consider the three-dimensional Laplace-like term, which is defined in Cartesian

coordinates by:
Qs 0Qy 0Q.
Oox + dy + 0z

where:
Qu Kew Koy Koz dp/0x
Qy | = | Kya HKyy HKyz dp/dy
Q: Kze Koy Haz dp/ 0=z

Which is essentially the first term of the CR equation. Suppose the contribution
is valid in a domain D with boundary S. According to the so called Galerkin
method, the contribution is multiplied by an arbitrary function f and then
integrated over the Domain of interest. Since the function f is completely
arbitrary (well, continuous at least), this is supposed to be equivalent to the
original problem:

///f(T,yaZ) <a§; + 88ny + 3(;.32) dz.dy.dz

The advantage of the Galerkin formulation is that we are able now to convert
second order derivatives into first order derivatives. To see how this works, let
us recall Green’s theorem, or partial integration for triple integrals, by which
the following expression can be substituted for the Galerkin integral:

f{ fQndS - ///(Qx% +Qy% +Qz%> dx.dy.dz

The first of these terms incorporates boundary conditions at the surface S. The
boundary integral is zero in case the normal derivative @, = 0.

For this reason @,, = 0 is called a natural boundary condition: it is fulfilled
automatically if the first term in the above formulation is simply discarded.
With the CR problem, such a natural boundary condition occurs at the z = 0
plane (at least in the case of interest for us). Due to symmetry, the gradient of
the pressure normal to it must vanish:

(-
0z -

It can be shown that the tensor reads as follows, when expressed in spherical
coordinates:

Krr 0 Rrg
0 ke O
Kor 0 Koo

10

At z = 0 the vector €y coincides with —é, and the normal 7. Therefore:

_ o L Op dp
(@n=0),g < EVp-ii=rps, =0 <8Z_O>ZO

Hence the natural boundary condition at z = 0 is fulfilled if and only if the sym-
metry condition is fulfilled. Implementation of the boundary condition would
have been a zillion times more difficult if this were not the case!

The second term is an integral for the bulk material. Substitute pressure
fluxes herein and watch out for the minus sign:

of af of || fex Rev Kes || OP/OC
B 2[5 5 5] (3w
x Y z Kip Koy Koz Op/0z

Note that the second order derivatives have been removed indeed. It is possible
to handle second order problems with first order (linear) finite elements only.

If the integration domain is subdivided into finite elements E, then the above
integral is splitted up as a sum of integrals over these elements. Integration is
always carried out numerically, by using integration points [?]. A little bit of
innovation is involved in recognizing that it doesn’t make much difference if
the integration points are deliberately chosen in such a way that evaluation
is as easy as possible: we always select them at the vertices of any elements
involved. It can be shown that elements which are integrated in such a way are
in fact superpositions of linear tetrahedra. Linear tetrahedra are so to speak the
ultimate 3-D elements and there’s no need for anything else most of the time.
At such linear tetrahedra, differentiations 9/9(x,y, z) are given as a matrix
operation, with the Differentiation Matrices found in an earlier stage. Here is
the symbolic representation for the element-matrix contribution belonging to
the diffusion term, using differentiation matrices 9/9(z,y, z):

A Rz Kzy Rz 8/8I
_ Z — [0/0x 0[Oy 00z || Kya FKyy Fy: 9/dy
tetrahedra Kazz Kay Kaz 0/0z

Here n = number of element-brick vertices, A = determinant of tetrahedron. A
formula which can be traced back easily in the Fortran listing of the ELEMENT
subroutine. In [?] it is suggested that a tensor should be represented as a
diagonal matrix, thus making it necessary to find eigenvalues and -vectors in
the first place. The above analysis shows that such a procedure is too much
of the good. (Well, I didn’t believe it at first sight, but experience shows that
the coefficients obtained for the element matrix are always identical with both
methods.)

11

Convection part

There are several paths to understanding with respect to proper discretization of
the convective terms in the CR equation. The first thing to keep in mind is that
Finite Volume methods are to be preferred and that techniques of upwinding
according to this method are to be considered as common practice. There
will be no dispute about the pros and cons of this approach. Now it is well
known that, with Finite Volume methods, rectangular (equidistant) grids are the
easiest to work with. Having adopted the idea that tetrahedral (sub)elements
are necessary and sufficient, the only thing we have to do is to transform the
coordinates of the tetrahedral element into a rectangular coordinate system and
then apply the Finite Volume tradition within these new coordinates.

Let (0,1,2,3) be the numbering of the vertices of an arbitrary tetrahedron.
Let (u,v,w) be the velocity components in the global (z,y, z) coordinates. Let
(U,V,W) the components of the velocity, as seen in the local coordinate sys-
tem spanned by the sides 01, 02, 03 of the tetrahedron. Then the following
relationship holds:

u Tr1 — Ig To — X0 r3 — Ig
v i=U|yi—v |+V]| vy |+W | ys—o
w Z1 — 20 Z9 — 20 zZ3 — 20

The inverse of this transformation can be written as follows:

1 —To Y1 —Yo <1—%0
[U \% W]z[u v w] To—To Y2 — Yo 22— 20
T3 —Zo Y3 —Yo 23— %20

The transformed scheme for convection now simply reads:
U(p1r —po) + V(p2 — po) + W(ps — po)

In the chapter ”Linear Tetrahedron” the following formula was derived:

-1

A T1—To Y1 —Yo 21— 20 Ty —Tp
B |=|22—20 Y2—Y 22— %0 T — Ty
C T3—To Y3—Yo 23— 20 T3 —Tp

Together with:
oT/ox=A ; 0T/oy=B ; 0T/0z=C

Combining this with the above, it is inferred that:

P1— Do
(U V. W]| p-p | =
P3 — Do

12

-1
1 —2Zo Y1 — Yo 21— 20 P1 — Po

[u v w] T2 — o Y2—Yo 22— 20 P2 — Po =
T3 —To Y3 —Yo 23— 20 D3 — Do
Op/0x ap ap ap
[u v w] Op/dy :u6—+va—+wa—
Op/0z v Y z

Just meaning that the theory is quite consistent with respect to the proposed
coordinate transformation.

In order to achieve proper weighting of the convection contribution as com-
pared with the contribution due to diffusion, it must be examined how the
scheme fits into the same Galerkin procedure as was applied to diffusion:

op Op op
///f (uax +U@y +w62> dx.dy.dz

Again, the integration is carried out numerically, with the integration points
located at the vertices of the finite element brick. The result is:

1 n
- Z |Ag| (convex),
k=1

Where ”convex” are the convective terms, discretized according to the above,
n =number of brick vertices, Ay =determinant of tetrahedron at vertex (k).

So far so good. What has been forgotten so far is just one more thing:
upwinding. Let’s recall the transformed scheme for convection:

U(pr —po) +V(p2 —po) + W(pz —po) = Up1 + Vpa + Wpz — (U +V + W)pg

When applying the conventional Finite Volume upwind technique [?], only ve-
locity components (U, V, W) which have a negative sign are allowed to contribute
to the scheme. There is a small additional complication, which can be explained
as follows. It is assumed that the local grid is orthogonal in the first place. At-
tention is paid to the velocity component U only, which means in effect that we
have a one-dimensional problem. Brainless application of the Galerkin method,
without upwinding, would have resulted in a scheme like:

U, —U Us — U Us —U
2 Ly 28 2 =28 ! instead of (U — Uh)
2 2 2
The infamous & wrong zero-diagonal result is on the left. The correct upwind
scheme is on the right. It is seen that a factor 2 in the denominator would give
insufficient weight to the latter. Hence we must apply 2x these terms.

13

Remaining parts

The last term to be discretized is the multiplicative factor ag. Due to the fact
that everything is integrated at the element vertices, this represents no problem
whatsoever. Simply add terms ag times Ay /n to the diagonal of the element
matrix under construction.

The entire local discretization is contained in one Fortran subroutine, called
ELEMENT. Two building blocks (”bricks”) are implemented herein: a prism
with 6 vertices and a hexahedron with 8 vertices. Both are ultimately built up
from (mutually overlapping) tetrahedra, which are located with their ” origins” 0
at the vertices of the bricks. A step in determining the Differentiation Matrices
is the inversion of a 3 x 3 matrix by subroutine DINV3.

Needed for the element matrices are two things: local geometry information
and the coefficients of the CR. equation, which also depend upon the coordinates.
Calculating the geometry for a hemisphere is elementary. It is done by a piece
of in-line code in the MAIN program. Calculating the coefficients of the CR
equation is done in the ELEMENT subroutine itself: subroutine COEFFS.

The local element matrices are assembled into a large a-symmetrical (banded)
global matrix by the traditional finite element Assembly procedure. What’s
needed for such a procedure is the so called connectivity or topology of the
mesh. We have decided also to keep the connectivity information in-line. Use
has been made of a Fortran statement function nr(i, j, k), which basically is
an association between the finite element (nr) and the finite difference (4, j, k)
numbering schemes, thus combining (again) the best of both worlds.

There are two types of Boundary Conditions associated with CR. The ”nat-
ural” type B.C. which is applicable for the plane z = 0 was discussed already in
the section ”Diffusion part”. Dirichlet type boundary conditions occur at the
inner and the outer hemi-spheres, which furthermore delimit the integration do-
main. Pressure values must be prescribed there. In the demonstration model,
values 0 and 1 are adopted, respectively.

Direct outcore solver

After the asymmetrical linear system of equations has been assembled, it must
be solved. A direct solution method has been implemented in the first place. It’s
still contained in a main program called ” Direct.f”. I have devised an out-core
version of the LU decomposition technique for asymmetric matrices: subroutines
VEGEN and TERUG. The bookkeeping, which is inevitably associated with
storing coefficients in a band matrix, is taken care of by the Fortran statement
function lok(i,j). It’s used in all main programs, as well as in the two subroutines
mentioned.

With such a direct solution method, Dirichlet boundary conditions are usu-
ally implemented by adding a BIG number to the diagonal of the global matrix
and adding the same BIG number, multiplied by the actual (pressure) value, to

14

the right hand side (load vector). A certain inaccuracy is introduced herewith,
which can be diminished by making BIG still bigger. At the expence, however,
of making worse the so-called condition number of the global matrix. A value of
10% seems to be reasonable compromise, and is contained as such in the 'Direct’
program.

With direct methods, it turns out that huge amounts of memory and com-
putation time are required for solving even a moderate problem. Let NN be the
number of unknowns and NB be the bandwidth. Then memory requirements
as a whole will increase as NN*(2*NB+1). This is taken care of a great deal by
putting most of the equation coefficients on temporary disk: only (2*NB+1)**2
coefficients need to be kept in core memory at a time. Computing times,
however, increase even more with increasing dimensions. It can easily be in-
ferred from the loop structure in 'vegen’ that they are roughly proportional to
NN*NB**2. Let’s compare the following two cases. The first one was actually
run, and its computing time measured: it turned out to be 6 minutes.

Unknowns : 2535 : case 1
Bandwidth: 192 : case 1
Unknowns : 20335 : case 2
Bandwidth: 620 : case 2

The computing time can be estimated for the second case, at hand of the first
one: NN*NB**2 = (20335/2535) * (620/192)% = 83.646 x slower. First run =
6 minutes, second one = 83.646 x 6 = 502 minutes = 8.4 hours for the solver
(vegen.f) alone.

The overall structure of the asymmetrical band matrix can be visualized
with a separate Fortran program called 'Plotlt.f’. In order to use it, you have
to change the 'Direct’ MAIN program in at least two places:

c , access=’direct’,recl=4x*(2+NB+1) ,disp="delete’) BECOMES:
, access=’direct’,recl=4*(2xNB+1)) ! File will be on disk
INSERT:
stop ’effe’
JUST BEFORE:
*
* SOLVATION :-)

The MAIN program then will leave on disk the big matrix just after Assembly.
Now run ”PlotIt” and send " fort.7” to a PostScript printer. And ... don’t forget
to restore the original MAIN program!

It is easily conceived from the picture that the observed inefficiency must
be associated with fill-in of the very many zeros within the banded storage.
The PostScript-file (making up the figure) represents the matrix S(i,j) of the
equations to be solved in our program. The x-direction corresponds to the
index (i), the y-direction (with its origin at the top) corresponds to the index

15

(7). The non-zero entries in S(i,j) are respresented by a black dot. As can be
seen, most of the matrix is blank, that is: filled with zeros. (It’s a so called
SPARSE matrix.) During pivoting (in ”vegen”) the whole area between the
two ”boundary lines” will suffer from ”fill-in”, which means that it will be
"painted black” with additional non-zero numbers. All these will take part in
the computational process. Crunch, crunch ...

Unknowns : 2535
Bandwidth: 192
Incore ..: 633460
Outcore .: 3903900

0.7083941 % of Full
4.664361 % of Banded
39 = maximum number coefficients / row

The frustrating thing is that less than 5 percent of the MegaBytes needed is
filled with non-zero coefficients, just after Assembly. Then pivoting comes in
(with ”vegen”) and fills in this space for more than 85 percent!

Iterative solver

Instead of a Direct Solver, as has been used so far, there is the possibility of
implementing an Iterative Solver. Due to lack of experience, I hesitated to do it
for a long time. But now I've finished a few programs, and the result has been
surprising to me! Iterative methods, as compared to a direct method, seem to
be FAR better for the bigger problems! Our method is called ” Gauss- Seidel
with successive over-relaxation”. It’s nothing new, actually ...

Crucial part of the code is the Gauss pre-processor, which in fact is noth-
ing but a large (" Topology ...”) Sorting & Searching program. The ”Gauss”
program is surprisingly fast, nevertheless, because I've made an explicit use of
the problem’s structure. This has been a very dedicated programming exercise.
It also means that you can’t easily change the existing topology of the of the
calculation domain, being a half-sphere.

The following serves as background info. The merging algorithm of ”in-
breng.f” was developed because I was in the need of sorting out a huge collec-
tion of Midi(music) files. The accompanying BASIC program was published on
the Net. Now I've known for a long time that using iterative methods for finite
element problems involves kind of a sorting procedure, which seemed prohibiting
at first sight. But then suddenly it occurred to me that I could use ... the same
algorithm as with the Midi files! Which turned out to be very efficient, for quite
another purpose. The original BASIC program, called 'midiot.bas’ is included
herewith. If you are not a MIDIot, then it’s useless. If you are, then you’d
better stop collecting everything from the net, so that you don’t have to use it
anyway :-)

16

As has been stated previously, the iterative method needs some pre-processing
first. This is the ”Gauss” code. All of the Geometry is contained in this part.
The PreProcessor writes (quite a lot of) data, called ” Gauss.dat” to disk. After
?Gauss”, guess what, ”Seidel” must be invoked several times. This program
also contains the Boundary Conditions, and a couple of iteration parameters,
which can be adjusted. ”Seidel” leaves it’s ”Seidel.dat” data on disk for restart.
Hence you must do ” Gauss Seidel Seidel Seidel ...” until convergence occurs.

MOST = number of iterations within 1 run
EPS criterion for convergence
00 over-relaxation factor

I have already made a choice for these numbers. Especially the "OO0” fac-
tor, usually denoted as w, is rather critical. A good choice will accelerate the
iterations a great deal. Quoted without permission: ”In general, it is not pos-
sible to compute in advance the value of w that is optimal with respect to the
rate of convergence [... | Frequently, some heuristic estimate is used, such as
w = 2—O(h) where h is the mesh spacing of the discretization of the underlying
physical domain.” Be aware of the possibility that the value of w probably must
be changed as soon as the physics is altered in subroutine COEFFS. The w in
the program was determined by experiment: simply by looking at the conver-
gence with different values of it. We think that’s the best strategy anyway. The
w number must be in the interval [0,2], thus: 0 < w < 2, but people say it’s
better to over-estimate than to under-estimate it. (Thus, instead of ”71.82” you
might try ”1.83” but not ”1.81” ;-)

An advantage of iterative methods is also that you can see what the solution
is going to look like before obtaining full ”accurate” results. For example, first
choose EPS = 1.E-4 and then refine the solution with EPS=1.E-5.

It’s a slow mental process, but it gradually dawns to me that I have made
the wrong choice by implementing a direct solver in the first version of the CR
program. Following below is a couple of measurements. No use has been made
of Convex 3840 vector-processing; hence pure scalar performance, as will be the
case with a moderate workstation (such as a RS-6000 machine).

Grid = 18 x 18 x 12 :
Direct method: 404.5 real 359.1 user + 15.8 sys = 374.9

Iterative method:

Gauss: 14.6 real 13.8 user 0.2 sys
Seidel: 19.9 real 16.9 user 0.6 sys
30.7 + 0.8 = 31.1 total

17

Comparison = 374.9 / 31.1 = 12 times faster !!!

Grid = 35 x 35 x 24 :
Direct method:

Pivot i *%x CPU time limit exceeded
because the CPU time limit of our long queue is 5 hours.

By counting dots we see that the direct solver has done only
28/72 ’th part of the work to be done. By extrapolation we
get an estimate of > 13 hours. This number is also obtained
by multiplying the result of the 18x18x12 grid with 277 :

128 x 374.9 /3600 = 13.33 hours.

Iterative method:

Gauss: 130.7 real 121.1 user 2.1 sys
Seidel: 5569.2 real 515.5 user 8.4 sys
636.6 + 10.5 = 647.1 total

Hence the improvement in performance comes close to a factor
of ... 75 Il

So, iterative methods are really sensational! I get the unbelievable result that
computations will be completed in 10 minutes instead of 10 hours! Also the
amount of core memory needed should be hardly a problem for a moderate
workstation: approximately 5 MB for a 35x35x24 grid.

18

Appendix

How we met ... on the Net

Collaboration between the authors of this paper wouldn’t even have come into
existence without the Internet. Over a hundred E-mails have been exchanged
during this little project. The correspondence was started with a poster in one
of the Internet newsgroups. Here is the original message:

From sci.math.num-analysis Thu Mar 18 08:41:34 1993
From: fichtner@acs.ucalgary.ca (Horst Fichtner)
Subject: 3-D PDE on non-rectangular domain
Organization: The University of Calgary, Alberta

I want to solve numerically an elliptical PDE on a
three-dimensional domain.

Rest of message deleted. The request was answered on 93 Mar 19, as follows:

From: Han.deBruijn@rc.tudelft.nl (Han de Bruijn)

I am in the process to develop such a code. If you describe
to me in some more detail what your problem is, [...]

The collaboration then started by ”setting the stage”: how to explain the physics
of CR to a non-astronomer in the first place? It also became clear that the
CR problem could not be solved by a kind of "general” code. Hence it was
decided to develop a quite dedicated computer-program instead. The exchange of
mathematics ”at a distance” was accomplished in an efficient manner with help
of ITEX. The following splitting of responsibilities has proven to be effective.
A numerical method for solving convection-diffusion equations of the CR type
can be developed, quite independently of whatever physical details are actually
involved. Because the physics is mainly in the coefficients of the equation,
the latter can be separated a great deal from the equation itself and separately
coded. Modular programming is not luxury, but merely a necessity when people
with such different backgrounds are going to collaborate! At last the program,
with exception of the ”coeffs” routine, was ”shipped”, by e-mail of course, from
Delft University to the University of Maryland in the beginning of May 1995:

From horst@aix.umd.edu Sat May 6 21:54:25 1995
Subject: Nice performance...

This concerned the version with the direct solver in it. The iterative programs
were sent a couple of months later. And the following response was received:

From hfichtne@wam.umd.edu Fri Oct 6 22:10:44 1995
Subject: Flabbergasted...

19

Triangle Isoparametrics

Isoparametric transformation is the standard approach where the Finite Ele-
ment Method relies on when it has to deal with curved geometries: its strong
point. Let’s consider first the simplest non-trivial finite element shape in two
dimensions, the linear triangle, and see where isoparametric transformations
actually come from. Function behaviour is approximated inside such a triangle
by a linear interpolation between the function values at the vertices, also called
nodal points. Let T" be such a function, and x, y coordinates, then:

T=Axz+By+C
Where the constants A, B, C are yet to be determined.

3
3
y
n
2 1 1 2
1
X

Substitute r = =, and y = y;, with £ =1,2,3:

T 1 1 C

T | =11 z2 ¥ A

T3 1 T3 Y3 B

Start with:
T1 = A.IL‘l + B.y1 + C

Clearly, the first of these equations can already be used to eliminate the constant
C', once and forever:

T-Th=A(x—x1)+B.(y)
Then the constants A and B are determined by:

Tp —T1 = A(ze — x1) + B.(y2 — v1)
T3 -1 = A(l‘g — 1'1) + B(y3 - yl)

Two equations with two unknowns. The solution is found by Cramer’s rule:

A=[lys—y1)-(T2 = T1) — (y2 —91)-(T5 = Th)]/A
B = [(.Z'Q - $1).(T3 - Tl) - (I3 - .Tl).(Tz - Tl)]/A

20

There are several forms of the determinant A, which should be memorized when
it is appropriate:

A= (2 —x1).(ys — 1) — (23 — 21).(y2 — ¥1)

A =2 x triangle area

A =z1.y2 + T2.Y3 + T3.Y1 — Y1.T2 — Y2.73 — Y3.21
A =w1.(y2 —y3) + 2.(y3 — 1) + 23.(31 — ¥2)

A =y1. (73 — 22) + y2.(z1 — 23) + y3.(v2 — 1)

1 1 Y
A = 1 T2 Y2
1 x3 ys

Anyway, it is concluded that:
T— T1 = f(TQ — Tl) + 7](T3 — Tl)

Where:
§=[(ys —v1)-(x —21) — (z3 — 21).(y —1)]/A
n=1[x2—71).(y —y1) = (g2 —1)-(z — 71)]/A

or €1 [+ws—w) —(ws—a) -
I e Y il

n —(y2—y1) +(r2—21) Y-

The inverse of the following problem is recognized herein:
|:I‘I1:|_|:(Z‘2I1) (1311)][5}
y—un (2—w1) (Ws—wm) || m

x—x1 =& (22 — 1) +1.(x3 — 1)
y—y1=&y2—vy1) +1-(ys — 1)

Or:

But also:

T— T1 = g(TQ — Tl) + U(Tg — Tl)
Therefore the same expression holds for the function T as well as for the coordi-
nates x and y . This is precisely what people mean by an isoparametric (”same

parameters”) transformation.
Now recall the formulas which express £ and 7 into x and y :

§=1(ys —v1).(x —21) — (z3 — 71).(y — 11)]/A
n=[(z2—z1).(y —y1) — (y2 — y1)-(z — 21)]/A

Thus £ can be interpreted as: area of the sub-triangle spanned by the vectors
(x—x1,y—y1) and (z3—x1,y3—y1) divided by the whole triangle area. And 7 can
be interpreted as: area of the sub-triangle spanned by the vectors (z—x1,y—y1)

21

and (x2 — 21,y2 — y1) divided by the whole triangle area. This is the reason
why & and 7 are sometimes called area-coordinates; see the figure above, where
(two times) the area of the triangle as a whole is denoted as A. There are even
three of these coordinates in literature; see [?]. The third area-coordinate is, of
course, dependent on the other two, being equal to (1 —& —n). Instead of area-
coordinates, we prefer to talk about local coordinates £ and 7 of an element, in
contrast to the global coordinates x and y. It is possible that local coordinates
coincide with the global coordinates. A triangle for which this is the case is
called a parent element. The portrait of the parent triangle is also depicted in
the above figure: it is rectangular, and two sides of it are equal.
Let’s reconsider for a moment the expression:

T-Ty=¢(Ty—T1) +n.(T5 = T1)
Partial differentiation to & and 7 gives:
OTjo¢=Te — Ty ; OT/On=T3—Ty
Therefore, with node (1) as the origin, hence T(0) = Ty:

oT oT
T=T0)+&= +n—
0)+¢ o "o
This is part of a Taylor series expansion around node (1). Such Taylor se-
ries expansions are very common in Finite Difference analysis. Now rewrite as
follows:

T = (1 — f — T}).Tl +§.T2 + 77.T3

Here the functions (1 — & — 1), &, n are called the shape functions of the Finite
Element. Shape functions N have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

Ni=1-¢—n ; Na2=& ; Nz=n
So we have two representations, which are allmost trivially equivalent:

T=T1+¢&(Ty—T1) +n.(T5 —T1) : Finite Difference like
T=01-&—n).T+&Ts+n.Ts : Finite Element like

What kind of terms can be discretized at the domain of a linear triangle?
In the first place, the function T'(x, y) itself, of course. But one may also try on
the first order partial derivatives 0T /dz , 0T /0y. We find:

0T)0z =A=[(yz —y1).(To —T1) — (y2 — y1).(T3 — T1)]/A
8T/6y =B = [(732 - Tl)(Tg - Tl) - (.733 - Il).(TQ — Tl)]/A

22

By collecting terms belonging to the same T}, this can also be written as:

Ty
OT/dx | _ [4+(y2—ys) +(ys —wy1) +(w1 —y2)
A [oT /oy } B [—(x2 —w3) (w3 —x1) —(21— 22)] %

Or, in operator form:

R R o B s B o

The right hand side will be called a Differentiation Matriz in subsequent work.
Thus the gradient operator is represented at a linear triangle by a 2 x 3 Differ-
entiation Matrix.

23

Bibliography

Horst Fichtner, Hans Jorg Fahr, S. Ranga Sreenivasan, ” The Influence of
a Non-Spherical Solar Wind Termination Shock on the Pressure Distribu-
tion of the Anomalous Component of Cosmic Rays in the Heliosphere”,
Proceedings of the 23rd International Cosmic ray Conference (1993).

Han de Bruijn, ftp.rc.tudelft.nl:pub/pc/msdos/misc/suna.zip

0O.C. Zienkiewicz, " The Finite Element Method”, 3th edition, Mc.Graw-
Hill U.K. 1977.

S.V. Patankar, ”Numerical Heat Transfer and Fluid Flow”, Hemisphere
Publishing Company U.S.A. 1980.

24

