
TripleGrid Calculus

Author: Han de Bruijn
Date: 2006 November

This document is meant as an extension to a previously published one, called
MultiGrid Calculus. Upon retrospective, DoubleGrid Calculus would have been
a better name for the latter. The reason being that ”Multigrid” is much of a
reserved word within the world of Numerical Analysis. Therefore its use in a
pure mathematics context will likely give rise to confusion. (But maybe that’s
just intended?) Anyway, quite unexpectedly, it has been discovered that there
exists another kind of Multigrid Calculus, which is distinct from DoubleGrid.
It also works with coarsening and refinement of grids, but does not double or
halve the intervals. Instead, it makes these intervals larger or smaller, not with
a factor two, but with a factor three. Ah, and now you could think that the
next step is a MultiGrid Calculus employing a factor four or maybe five. But
this is not so. The factor four being already covered by a double doubling in
the first place. Furthermore, it can be proved that factors five or higher are not
an option, except as a powers of 2 and 3 . Thus all possibilities for MultiGrid
are exhausted with DoubleGrid and TripleGrid. By the way, the DoubleGrid
document has been available all the time at:

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/calculus.pdf

Elimination

This paragraph is essentially a rewrite of a ’sci.math’ poster:

http://groups.google.nl/group/sci.math/msg/f4f1f8e983fef986?hl=en&

Re: Proof of conjecture wanted.
Consider a piece of an (infinitely) large system of uniform tri-diagonal linear
equations:

−a.T0 + T1 − b.T2 = 0 (1)
−a.T1 + T2 − b.T3 = 0 (2)
−a.T2 + T3 − b.T4 = 0 (3)
−a.T3 + T4 − b.T5 = 0 (4)
−a.T4 + T5 − b.T6 = 0 (5)

And a boundary condition (RHS 6= 0) somewhere, but not within our reach.
It is possiblle to use equations (2) and (4) for eliminating T2 and T4 from (3)
and replace them by T1 and T5. As follows:

T2 = a.T1 + b.T3 (2)
T4 = a.T3 + b.T5 (4)

Giving respectively:

−a(a.T1 + b.T3) + T3 − b(a.T3 + b.T5) = 0 =⇒

1

−a2.T1 + (1− 2.a.b)T3 − b2.T5 = 0 =⇒

−
(

a2

1− 2ab

)
T1 + T3 −

(
b2

1− 2ab

)
T5 = 0 (3, 2, 4)

Thus, by employing this elimination procedure, the matrix pattern:

−a 1 − b

has been replaced by:

−
(

a2

1− 2ab

)
0 1 0 −

(
b2

1− 2ab

)
The above is essentially the theory as has been developed in MultiGrid Calculus,
the paragraphs Direct Solver and Persistent Properties.
But we will go even further and eliminate the variables T1 and T5 from equation
(3) by employing (1) and (6) together with (2) and (4):

T1 = a.T0 + b.T2 = a.T0 + b.(a.T1 + b.T3) (1, 2)
(1− a.b).T1 = a.T0 + b2.T3 =⇒

T1 =
(

a

1− ab

)
T0 +

(
b2

1− ab

)
T3

T5 = a.T4 + b.T6 = a.(a.T3 + b.T5) + b.T6 (4, 5)
(1− a.b).T5 = a2.T3 + b.T6 =⇒

T5 =
(

a2

1− ab

)
T3 +

(
b

1− ab

)
T6

Now substitute (1,2) and (4,5) into (3,2,4), then:

−a3/(1− 2ab)/(1− ab) T0

+
[
1− 2.a2.b2/(1− 2ab)/(1− ab)

]
T3

−b3/(1− 2ab)/(1− ab) T6 = 0

And the matrix pattern has become:

−a3.X(a, b) 0 0 1 0 0 − b3.X(a, b)

Where:

X(a, b) =
1/(1− 2ab)/(1− ab)

1− 2.a2.b2/(1− 2ab)/(1− ab)
=

1
(1− 2ab)(1− ab)− 2.a2.b2

=
1

1− 3ab

Hence the matrix pattern, with five equations involved, simplified:

−
(

a3

1− 3ab

)
0 0 1 0 0 −

(
b3

1− 3ab

)

2

It is seen that the elimination procedure with 5 equations involved results in a
pattern which is very much alike the one with 3 equations involved:

−
(

a2

1− 2ab

)
0 1 0 −

(
b2

1− 2ab

)
This would suggest that an elimination procedure with 2n−1 equations involved
would result in a matrix pattern like:

−an/(1− n.a.b) 0 ... 0 1 0 ... 0 − bn/(1− n.a.b)

But this suggestion is false. It is already false for n = 1, as is clear from
−a 6= −a/(1 − ab) and −b 6= −b/(1 − ab). And it is false for n = 4, as is clear
from 4 = 2× 2. Because herewith the function X(a, b) becomes, for n = 4 :

X(a, b) =
1/(1− 2ab)/(1− 2ab)

1− 2 [a2/(1− 2ab)] [b2/(1− 2ab)]

1
(1− 2ab)2 − 2.a2.b2

=
1

1− 4ab+ 2a2b2
6= 1

1− 4ab

We conclude that the elimination of (2n− 1) equations from the given uniform
three-diagonal linear system of equations results in a pattern:

−an/(1− n.a.b) 0 ... 0 1 0 ... 0 − bn/(1− n.a.b)

But if and only if (n = 2) or (n = 3). The case (n = 2) has been treated quite
extensively in MultiGrid Calculus, which preferrably should have been renamed
to DoubleGrid Calculus. And the case (n = 3) will be treated in the present
document, which is properly titled TripleGrid Calculus.

Quotient Calculus

So, if we eliminate (2n − 1) equations from the uniform three-diagonal system
of linear equations, as defined in the preceding paragraph, then we have the
following matrix patterns, but only for n = 2 or n = 3 :

. −a2/(1− 2ab) 0 1 0 −b2/(1− 2ab) .
−a3/(1− 3ab) 0 0 1 0 0 −b3/(1− 3ab)

So the quotient of the outer diagonal elements, with the variables T2 and T4

replaced by T1 and T5, for the case n = 2, is (b/a)2 .
And the quotient of the outer diagonal elements, with the variables T1, T2, T4, T5

eliminated, for the case n = 3, is (b/a)3 .
Thus for n = 2 and n = 3 we have that the quotient of the outer diagonals
is (b/a)n. After eliminating variables with the n = 2, 3 methods for the first
time, all equations can be re-ordered to form two or three blocks in a new but
equivalent tridiagonal system. This procedure can be repeated ad infinitum. It
should be known from Multigrid Calculus that such a thing corresponds with
grid coarsening, geometrically. Resulting in meshes which are coarsened two- or

3

threefold every time again. The reverse procedure, corresponding with a two-
or threefold mesh refinement, has taking the 2nd or 3rd root from the quotient
as its algebraic equivalent. It is known from Multigrid Calculus that the (b/a)n
law is even valid for powers n = 2m where m is a whole number, including
zero. And for powers n = 21/m as well, where m is a whole number except
zero. Thus e.g the quotient of the outer diagonal elements for the case n = 4
is still as could be conjectured from the cases n = 2 and n = 3, namely b4/a4.
In very much the same way, it can be shown that the quotient law is valid for
powers n = 3m and for powers n = 31/m. But, maybe somewhat unexpectedly,
it can be proved with my favorite Computer Algebra System, MAPLE, that the
conjecture breaks down at n = 5:

eliminate({-a*T0+T1-b*T2=0,-a*T1+T2-b*T3=0,-a*T2+T3-b*T4=0,

-a*T3+T4-b*T5=0,-a*T4+T5-b*T6=0,-a*T5+T6-b*T7=0,

-a*T6+T7-b*T8=0,-a*T7+T8-b*T9=0,-a*T8+T9-b*Ta=0},

{T1,T2,T3,T4,T6,T7,T8,T9});

Giving, among a lot of garbage:

3 3 2 2

{20 b a T5 - 21 T5 a b

4 4 7 2 6 5

- 5 b T5 a + b Ta a + 8 b a T5 - 3 a b Ta - T5 + b Ta

6 5 7 2

- 3 a b T0 + a T0 + a T0 b }]

Simplified by hand:

(20b3a3 − 21a2b2 − 5b4a4 + 8ba− 1)T5

+(−3a6b+ a7b2 + a5)T0 + (−3ab6 + a2b7 + b5)Ta = 0

Which proves that the quotient of the (T0, Ta) coefficients is not equal to (b/a)5.
Needless to say that the quotient power law (b/a)n is also invalid for other
numbers not being a power of 2 and/or 3, like for example 7 or 11.
Now imagine successive 2-fold or 3-fold grid coarsenings and refinements. We
conclude that these multigrids correspond with an exponent p in (b/a)p which
must be equal to one of the following:

p = 3n/2m or p = 2m/3n

(Because it has no sense to multiply by 3 and then divide by 3 again.) Where
m and n are whole numbers. It is not difficult to comprehend that any number
p can be approximated to arbitrary accuracy by a suitable choice of m and n .
Theorem. There exist natural numbers m and n such that for a given (positive)
real number p and a given uncertainity ε the following holds.∣∣∣∣p− 3n

2m

∣∣∣∣ < ε or
∣∣∣∣p− 2m

3n

∣∣∣∣ < ε

4

Proof. A well known theorem in number theory is that any irrational number
r can be approximated by a fraction m/n, where (m,n) are naturals, such that:∣∣∣r − m

n

∣∣∣ < 1
n2

This theorem can be proven with the Pigeonhole Principle, as exemplified in:

http://www.cut-the-knot.org/do_you_know/pigeon.shtml

Or otherwise (with help of the Stern-Brocot tree) as exemplified in:

http://groups.google.nl/group/sci.math/msg/e62cef86a820d0c3?hl=nl&

The proof then reads as follows (apart from minor nitpicking). Consider the
real number r = ln(x.3)/ ln(2):∣∣∣∣ ln(x.3)

ln(2)
− m

n

∣∣∣∣ < 1
n2

− 1
n2

<
ln(x.3)
ln(2)

− m

n
<

1
n2

− ln(2)
n

< n ln(x.3)−m ln(2) <
ln(2)
n

2−1/n <
xn.3n

2m
< 21/n

Now determine x such that xn = 1/p, which is done by x = exp(− ln(p)/n):

2−1/np <
3n

2m
< 21/np

And determine n from a given (relative) uncertainity δ:

21/n = (1 + δ) ⇐⇒ n =
ln(2)

ln(1 + δ)

2−1/n =
1

1 + δ
=

(1− δ)
1− δ2

> 1− δ

Therefore:
(1− δ)p < 2−1/np <

3n

2m
< 21/np = (1 + δ)p

|p− 3n

2m
| < δp

At last, eventually replace the relative error by an absolute error, i.e. δp = ε ,
and we are done. By the way, then:

n =
ln(2)

ln(1 + ε/p)
≈ ln(2)

ε/p
=⇒ n ≈ p

ε
(order of magnitude)

5

Thus an estimate for the powers in 3n/2m is one divided by the allowed relative
error in the approximation.
The above is the completion of a missing link in Multigrid Calculus. Up to
now, I could only prove that p should be of the form 2n or 1/2n with no hope
of extending this to arbitrary real exponents. The problem is stated on page
15 of the paper where it says ”We seek to generalize” and then followed by an
unsatisfactory solution.

DoubleGrid Product

With well known formulas for the trigonometric and hyperbolic functions, the
following results can be derived.
Trigonometric case:

2 + 2 cos(2φ) = 2 + 2
[
2 cos2(φ)− 1

]
= 4 cos2(φ)

=⇒ 2 + 2 cos(2φ) = [{2 + 2 cos(φ)} − 2]2

Hyperbolic case:

2 + 2 cosh(2p) = 2 + 2
[
2 cosh2(p)− 1

]
= 4 cosh2(p)

=⇒ 2 + 2 cosh(2p) = [{2 + 2 cosh(p)} − 2]2

Summarizing both cases:

y(φ) = 2 + 2 cos(φ) =⇒ y(2φ) = [y(φ)− 2]2

y(p) = 2 + 2 cosh(p) =⇒ y(2p) = [y(p)− 2]2

The product of the outer diagonal elements with DoubleGrid Calculus has been
presented in the paragraph Product Function of the corresponding document:

a′.b′ =
a2

1− 2.a.b
b2

1− 2.a.b
=
(

a.b

1− 2.a.b

)2

Thus the grid doubling iterations are of the form:

x :=
(

x

1− 2x

)2

=
(

1
1/x− 2

)2

The latter meaning that we could consider instead the iterations:

1/x := (1/x− 2)2 or y := (y − 2)2

Now remember the result we have just derived:

y(φ) = 2 + 2 cos(φ) =⇒ y(2φ) = [y(φ)− 2]2

y(p) = 2 + 2 cosh(p) =⇒ y(2p) = [y(p)− 2]2

6

And it is apparent that these formulas both seem to cover the iterations. The
trigonometric formula is valid for 0 ≤ y ≤ 4. The hyperbolic formula is valid for
y ≥ 4. Nothing new, actually. This is entirely equivalent with statements about
DoubleGrid in The Trigonometric Connection and The Hyperbolic Connection
within the corresponding document.
It’s a matter of routine now to prove that there is a set of closed formulas for the
DoubleGrid iterands. Start with y = y(φ) or y = y(p) as the zero’th iterand.
Then we have y(2φ) or y(2p) as the first iterand, y(4φ) or y(4p) as the second
iterand, and so on. In general: y(2nφ) or y(2np) as the n-th iterand. Working
back to the original variables, we have for the product of the outer-diagonal
elements, after n grid doublings:

xn =
{

1/ [2 + 2 cosh(2np)] for 0 < xn ≤ 1/4
1/ [2 + 2 cos(2nφ)] for xn ≥ 1/4

The essentials are also found in an old ’sci.math’ poster:

http://groups.google.nl/group/sci.math/msg/ca645eeb6d038b1f?hl=en&

Re: Induction with a hard start
It is established in MultiGrid Calculus that values xn cannot ”escape” from their
intervals. Thus either all iterands are 0 < xn ≤ 1/4 or all iterands are xn ≥ 1/4.
And there is no way out. Furthermore, the formulas indicate that it’s more
handsome to start with any (hyperbolic) angle and work from there - simply
by doubling the (hyperbolic) angles - rather than trying to determine an initial
(hyperbolic) angle p or φ from: cosh(p) = 1/(2.x)− 1 or cos(φ) = 1/(2.x)− 1.

TripleGrid Product

With well known formulas for the trigonometric and hyperbolic functions, the
following results can be derived.
Trigonometric case:

2 + 2 cos(3φ) = 2 + 2 [cos(2φ) cos(φ)− sin(2φ) sin(φ)] =
2 + 2

[{
2 cos2(φ)− 1

}
cos(φ)− {2 sin(φ) cos(φ)} sin(φ)

]
=

2 + 2
[
2 cos3(φ)− cos(φ)− 2

{
1− cos2(φ)

}
cos(φ)

]
=

2 + 2
[
2 cos3(φ)− cos(φ)− 2 cos(φ) + 2 cos3(φ)

]
=

2 + 2
[
4 cos3(φ)− 3 cos(φ)

]
= 8 cos3(φ)− 6 cos(φ) + 2

=⇒ 2 + 2 cos(3φ) = 8 cos3(φ)− 6 cos(φ) + 2

Try to divide the outcome by [2 + 2 cos(φ)]:

8 cos3(φ)− 6 cos(φ) + 2
2 cos(φ) + 2

= 4 cos2(φ)− 4 cos(φ) + 1 =

[2 cos(φ)− 1]2

=⇒ 2 + 2 cos(3φ) = [2 + 2 cos(φ)] [{2 cos(φ) + 2} − 3]2

7

Hyperbolic case:

2 + 2 cosh(3p) = 2 + 2 [cosh(2p) cosh(p) + sinh(2p) sinh(p)] =
2 + 2

[{
2 cosh2(p)− 1

}
cosh(p) + {2 sinh(p) cosh(p)} sinh(p)

]
=

2 + 2
[
2 cosh3(p)− cosh(p) + 2

{
cosh2(p)− 1

}
cosh(p)

]
=

2 + 2
[
2 cosh3(p)− cosh(p)− 2 cosh(p) + 2 cosh3(p)

]
=

2 + 2
[
4 cosh3(p)− 3 cosh(p)

]
= 8 cosh3(p)− 6 cosh(p) + 2

=⇒ 2 + 2 cosh(3p) = 8 cosh3(p)− 6 cosh(p) + 2

Try to divide the outcome by [2 + 2 cosh(p)]:

8 cosh3(p)− 6 cosh(p) + 2
2 cosh(p) + 2

= 4 cosh2(p)− 4 cosh(p) + 1 =

[2 cosh(p)− 1]2

=⇒ 2 + 2 cosh(3p) = [2 + 2 cosh(p)] [{2 cosh(p) + 2} − 3]2

Summarizing both cases:

y(φ) = 2 + 2 cos(φ) =⇒ y(3φ) = y(φ) [y(φ)− 3]2

y(p) = 2 + 2 cosh(p) =⇒ y(3p) = y(p) [y(p)− 3]2

The product of the outer diagonal elements with TripleGrid Calculus is derived
easily with help of the Elimination paragraph:

a′.b′ =
a3

1− 3.a.b
b3

1− 3.a.b
= a.b

(
a.b

1− 3.a.b

)2

Thus the grid tripling iterations are of the form:

x := x

(
x

1− 3x

)2

= x

(
1

1/x− 3

)2

The latter meaning that we could consider instead the iterations:

1/x := 1/x(1/x− 3)2 or y := y(y − 3)2

Now remember the result we have just derived:

y(φ) = 2 + 2 cos(φ) =⇒ y(3φ) = y(φ) [y(φ)− 3]2

y(p) = 2 + 2 cosh(p) =⇒ y(3p) = y(p) [y(p)− 3]2

And it is apparent again that these formulas both seem to cover the iterations.
The trigonometric formula is valid for 0 ≤ y ≤ 4. The hyperbolic formula is
valid for y ≥ 4. This must be the case, because of some results obtained in
the DoubleGrid document, the paragraph Governing Equation. Here it is estab-
lished that the dangerous and the safe domains of Gaussian Elimination have

8

a meaning which is independent of grid coarsenings and refinements. It is en-
tirely determined by the nature (i.e. discriminant) of a second order differential
equation with constant coefficients, which is accompanying our uniform three-
diagonal linear system of equations. It remains somewhat surprising, though,
that the the domains 0 < y ≤ 4 and y ≥ 4 are independently and seamlessly
recovered with TripleGrid as well.
It’s a matter of routine now to prove that there is a set of closed formulas for
the TripleGrid iterands. Start with y = y(φ) or y = y(p) as the zero’th iterand.
Then we have y(3φ) or y(3p) as the first iterand, y(9φ) or y(9p) as the second
iterand, and so on. In general: y(3nφ) or y(3np) as the n-th iterand. Working
back to the original variables, we have for the product of the outer-diagonal
elements, after n grid triplings:

xn =
{

1/ [2 + 2 cosh(3np)] for 0 < xn ≤ 1/4
1/ [2 + 2 cos(3nφ)] for xn ≥ 1/4

Again, it’s more handsome to start with any (hyperbolic) angle and work from
there - simply by tripling the angles - rather than trying to determine an initial
angle p or φ from: cosh(p) = 1/(2.x)− 1 or cos(φ) = 1/(2.x)− 1.

Stationary Points

The k-th iterate of one divided by the product of the outer diagonal elements
of our - meanwhile quite quite familiar - uniform three-diagonal matrix, is given
by:

yk = 2 + 2 cos(φk) or yk = 2 + 2 cosh(pk)

Depending on whether y is in the dangerous domain 0 ≤ y ≤ 4 or in the safe
domain y ≥ 4 respectively. With DoubleGrid coarsening, the successive angles
are given by doubling:

φk+1 = 2φk or pk+1 = 2pk

Which is equivalent to the law:

yk+1 = (yk − 2)2

With TripleGrid coarsening, the successive angles are given by tripling:

φk+1 = 3φk or pk+1 = 3pk

Which is equivalent to the law:

yk+1 = yk(yk − 3)2

Stationary points are easily detected with the method of the angles. This has
been discussed at length for DoubleGrid in the accompanying document. So
let’s give here a few TripleGrid examples. Starting with:

yk = yk(yk − 3)2 ⇐⇒
[
(yk − 3)2 − 1

]
yk = 0 ⇐⇒

9

yk(y2
k − 6yk + 8) = 0 ⇐⇒ yk(yk − 2)(yk − 4) = 0

Solutions:
yk = { 0 , 2 , 4 }

Or equivalently, and perhaps easier:

cos(3φk) = cos(φk) ⇐⇒ 3φk = { φk , −φk + 2π , φk + 2π } ⇐⇒

φk = {0 , π/2 , π } ⇐⇒ yk = 2 + 2 cos(φk) = {4 , 2 , 0 }

However, these equations may give rise to new questions. We may ask, namely,
what all solutions of the following equations are:

yk(yk − 3)2 = 4
yk(yk − 3)2 = 2
yk(yk − 3)2 = 0

The first equation is equivalent with:

y3
k − 6y2

k + 9yk − 4 = 0

We know that yk = 4 is a root. Thus another dividing polynomial can be found
with a long division:

y3
k − 6y2

k + 9yk − 4
yk − 4

= y2
k − 2yk + 1 = (yk − 1)2

The second equation is equivalent with:

y3
k − 6y2

k + 9yk − 2 = 0

We know that yk = 2 is a root. Thus another dividing polynomial can be found
with a long division:

y3
k − 6y2

k + 9yk − 2
yk − 2

= y2
k − 4yk + 1 =

[
yk − (2−

√
3)
] [
yk − (2 +

√
3)
]

The third equation is trivial and has yk = 3 as an extra solution. In total we
find with triple fold grid coarsening the following stationary values:

1 =⇒ 4 =⇒ 4
2−
√

3 =⇒ 2 =⇒ 2
2 +
√

3 =⇒ 2 =⇒ 2
3 =⇒ 0 =⇒ 0

Another example, as has been formulated and solved with my favorite Computer
Algebra System (MAPLE):

10

> y1 := series(y0*(y0-3)^2,y0);

2 3

y1 := 9 y0 - 6 y0 + y0

> y2 := series(y1*(y1-3)^2,y0,10);

2 3 4 5 6

y2 := 81 y0 - 540 y0 + 1386 y0 - 1782 y0 + 1287 y0 - 546 y0 +

7 8 9

135 y0 - 18 y0 + y0

> solve(y0 = series(y1*(y1-3)^2,y0,10),y0);

1/2 1/2 1/2 1/2

5 5 1/2 1/2 5 5

0, 2, 4, 3/2 + ----, 3/2 - ----, 2 + 2 , 2 - 2 , 5/2 + ----, 5/2 - ----

2 2 2 2

Impressive as it may seem, the method of angles enables us to solve this whole
thing entirely by hand:

cos(9φk) = cos(φk) ⇐⇒ 9φk = ±φk + n.2π where n = 0 , 1 , 2 , 3 , 4

φk = { 0 , π/4 , π/2 , 3π/4 , π , π/5 , 2π/5 , 3π/5 , 4π/5 }
The angles with π/5 in them can be found with help of the following document:

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/cospower.pdf

Where a useful formula, for our purpose, is found:

cos(5x) = 5 cos(x)− 20 cos3(x) + 16 cos5(x)

Substitute herein x = π/10, then we have, with z = cos(π/10):

0 = 5z − 20z3 + 16z5 ⇐⇒ 16(z2)2 − 20(z2) + 5 = 0 =⇒

z2 =
20±

√
202 − 4.5.16

32
=

5±
√

5
8

Because it is certain that z 6= 0. Furthermore it is evident that we should take
the largest root. Thus:

cos(π/5) = 2 cos2(π/10)− 1 =
5 +
√

5
4

− 1 =
+1 +

√
5

4

cos(2π/5) = 2 cos2(π/5)− 1 = 2
1 + 5 + 2

√
5

16
− 1 =

−1 +
√

5
4

cos(3π/5) = cos(π − 2π/5) = − cos(2π/5) =
+1−

√
5

4

cos(4π/5) = cos(π − π/5) = − cos(π/5) =
−1−

√
5

4

11

Herewith we finally find:
yk = 2 + 2 cos(φk) ={

4 , 2 +
√

2 , 2 , 2−
√

2 , 0 ,
5 +
√

5
2

,
3 +
√

5
2

,
5−
√

5
2

,
3−
√

5
2

}
Which is, of course, an exact match with the MAPLE solution.
At last it can be tracked how the stationary points, as found here, transform
into each other, as calculated from the formula yk(yk − 3)2 =⇒ yk+1 :

2 +
√

2 =⇒ 2−
√

2 =⇒ 2 +
√

2
5 +
√

5
2

=⇒ 5−
√

5
2

=⇒ 5 +
√

5
2

3 +
√

5
2

=⇒ 3−
√

5
2

=⇒ 3 +
√

5
2

Grid refinement

So far so good for grid coarsening. Let’s consider instead the inverse of grid
coarsening, which is grid refinement. Now it is quite clear that - with DoubleGrid
as well as with TripleGrid - all iterations are exactly the reverse of the above.
Thus, for DoubleGrid refinement:

yk = (yk+1 − 2)2

This actually means that we have to solve a quadratic equation for yk+1 :

y2
k+1 − 4yk+1 + 4− yk = 0

The discriminant D of a quadratic equation a.x2+b.x+c = 0 is very well known:

D = b2 − 4.a.c

Hence, for the problem at hand, the discriminant is:

D = 16− 4(4− yk) = 4yk

And it is positive for yk ≥ 0. The solutions of the quadratic equation are then:

y = 2±√yk

But these solutions may both serve again as input for a next iteration, associated
with DoubleGrid mesh refinement. This means that

√
yk ≤ 2 and therefore

yk ≤ 4. Thus we have restricted the possible values of yk to the interval [0, 4].
(The inverse of) this interval is known in MultiGrid (read: DoubleGrid) Calculus
as the Dangerous Interval. The whole danger being a division by zero in the
accompanying Gaussian elimination process. We can see that the restriction
0 ≤ yk ≤ 4 is both necessary and sufficient. Because it is impossible for the

12

iterands yk to ”escape” from that interval.
If, on the other hand yk > 4, then one of the roots becomes negative, while
the other remains positive and becomes greater than 4 again. With the next
iteration, only the positive root can be used, resulting again in a negative and
a positive root. The latter becomes larger and larger. This form of DoubleGrid
refinement has been advertized as the Safe Interval in Multigrid Calculus.
But, as before, it should have been easier to employ the angles instead:

cos(φk) = cos(2φk+1) ⇐⇒ φk+1 =
{
φk
2
, π − φk

2

}
Now we will start with the value that is certainly dangerous, namely y0 = 0.
Because that value will give rise to a division by zero during the Gaussian
elimination process. Then we have:

cos(φ0) =
1
2
y0 − 1 = −1 =⇒ φ0 = π

The next step is:

φ1 =
{ π

2
, π − π

2

}
= π

{
1
2

}
Add to this the initial value π , then we have in total for the dangerous values
so far:

φ1 ∪ φ0 = π

{
1
2
, 1
}

The next step is:

φ2 =
{ π

4
, π − π

4

}
= π

{
1
4
,

3
4

}
Add to this the other iterands, then we have in total for the dangerous values
so far:

φ2 ∪ φ1 ∪ φ0 = π

{
1
4
,

1
2
,

3
4
, 1
}

= π

{
1
4
,

2
4
,

3
4
,

4
4

}
Now it’s not difficult anymore to make an educated guess for the next steps.
And it is conjectured that:

φn ∪ φn−1 ∪ ... ∪ φ2 ∪ φ1 ∪ φ0 =
π

2n
{ 1 , 2 , 3 , . . . , 2n }

The physical meaning of this is that (the angles of the) dangerous points are
arbitrarily dense in the domain 0 < yn ≤ 4 . Sooner or later, any number in the
dangerous domain will become a candidate for division by zero in the (iterative
version of the) Gaussian elimination process. But the above is only a replay
of results that have been derived, more thouroughly, in the Multigrid Calculus
document. Let’s proceed now with TripleGrid and make a fresh start.

13

Via the Cubic

The cubic equation for grid refinement with TripleGrid Calculus is:

yk+1(yk+1 − 3)2 = yk

y3
k+1 − 6y2

k+1 + 9yk+1 − yk = 0

Which is of the form:

a3x
3 + a2x

2 + a1x+ a0 = 0

The discriminant of such a cubic equation is far less well known than the one
of a quadratic equation. It may nevertheless be found on the Internet at:

http://en.wikipedia.org/wiki/Discriminant

Where we can copy and paste the following formula:

D = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 + 18a0a1a2a3 − 27a2
0a

2
3

The general theory about the discriminant of a polynomial is quite interesting
in itself. The abovementioned web page offers pointers to topics like i.e. the
resultant and via the resultant link the Sylvester matrix of two polynomials.
Whatever. Let’s apply the general discriminant of the cubic to the specific one
we have at hand with TripleGrid:

y3
k+1 − 6y2

k+1 + 9yk+1 − yk = 0

With [a3 = 1 a2 = −6 a1 = 9 a0 = −yk] its discriminant D becomes:

D = 92(−6)2 − 4(−yk)(−6)3 − 4(9)31 + 18(−yk)9(−6)1− 27(−yk)212

= 3622 − 3622 − 2533yk + 3522yk − 33y2
k = 2233(−8 + 9)yk − 33y2

k

=⇒ D = 27.yk(4− yk)

It is known that the above cubic equation has three real solutions if and only if
this discriminant D is positive. Meaning that the following is a necessary and
sufficient condition for it:

0 ≤ yk ≤ 4

Thus, with TripleGrid coarsening, the Dangerous Interval becomes apparent
almost immediately, from the sign of the discriminant alone.
Key reference for the rest of this paragraph is:

http://www.sosmath.com/algebra/factor/fac111/fac111.html

Which is based on ”A new approach to solving the cubic” by R.W.D. Nickalls:

http://www.m-a.org.uk/docs/library/2059.pdf

14

Recall the cubic equation which is associated with triple grid refinement:

y3
k+1 − 6y2

k+1 + 9yk+1 − yk = 0

It is of the form:
ax3 + bx2 + cx+ d = 0

With [a = 1 b = −6 c = 9 d = −yk] . According to the above reference,
we can define a quantity xN by:

xN =
−b
3a

=
6
3

= 2

This means that a substitution z = yk+1−2 or yk+1 = z+2 will bring our cubic
into its reduced form:

y3
k+1 − 6y2

k+1 + 9yk+1 − yk = (z + 2)3 − 6(z + 2)2 + 9(z + 2)− yk =

z3 + 6z2 + 12z + 8− 6z2 − 24z − 24 + 9z + 18− yk = z3 − 3z + 2− yk = 0

Furthermore, a quantity δ is defined by:

δ2 =
b2 − 3ac

9a2
=

36− 27
9

= 1

Let’s consider the case where 0 ≤ yk ≤ 4. Then there are three real solutions
and we have the Casus Irreducibilis for the cubic equation at hand. According
to the above reference, we must use a trigonometric substitution in order to be
able to find any solutions:

z = 2δ cos(θ) = 2 cos(θ)

Upon substitution it reads:

8 cos3(θ)− 6 cos(θ) + 2− yk = 0

In the paragraph TripleGrid Product we found the following formula:

2 + 2 cos(3θ) = 8 cos3(θ)− 6 cos(θ) + 2

Therefore we have to solve:

2 + 2 cos(3θ) = yk ⇐⇒ yk+1(yk+1 − 3)2 = yk

Now define:

yk = 2 + 2 cos(φk) and yk+1 = 2 + 2 cos(φk+1)

Then we have that θ = φk+1 and:

yk+1(yk+1 − 3)2 = yk ⇐⇒ 2 + 2 cos(3φk+1) = 2 + 2 cos(φk) ⇐⇒

cos(φk) = cos(3φk+1)

Compare this with:
cos(φk) = cos(2φk+1)

And it seems that we have landed on solid ground: the method of angles.

15

TripleGrid Refinement

The end result of the preceding paragraph is:

yk+1(yk+1 − 3)2 = yk ⇐⇒ cos(3φk+1) = cos(φk)

This gives us a very simple algorithm, which is entirely in terms of angles:

3φk+1 = { φk , 2π − φk , 2π + φk }

φk+1 =
{
φk
3
,

2π − φk
3

,
2π + φk

3

}
Now we will start with the value that is certainly dangerous, namely y0 = 3.
Because that value will give rise to a division by zero during the Gaussian
elimination process. Then we have:

cos(φ0) =
1
2
y0 − 1 =

1
2

=⇒ φ0 =
π

3

The next step is:

φ1 =
{
π

9
,

2π
3
− π

9
,

2π
3

+
π

9

}
= π

{
1
9
,

5
9
,

7
9

}
Add to this the initial value π/3 , then we have in total for the dangerous values
so far:

φ0 ∪ φ1 = π

{
1
9
,

3
9
,

5
9
,

7
9

}
Each of the π(1/9, 5/9, 7/9) may serve as an input for another sequence of
solutions of our cubic. In order to bring order in the chaos, an article was
posted in ’sci.math’. And Mike Guy offered a complete solution:

http://groups.google.nl/group/sci.math/msg/331cbda22436f090?hl=nl&

It’s easier to see when you deal in integers x:

φk =
π xk+1

3k+1
where: xk+1 =

{
xk , 2.3k − xk , 2.3k + xk

}
Start with x1 = 1, then we find for the first iterations (sorted computer output):

1

1 5 7

1 5 7 11 13 17 19 23 25

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79

Quoted from his article. There are 3k elements of the array; they are all distinct,
odd and non multiples of 3, and are all < 3k+1. But if we add the previous
iterates to the set, each multiplied with a proper factor 3k, then we have:

1

1 3 5 7

1 3 5 7 9 11 13 15 17 19 21 23 25

16

And their number is:

30 + 31 + 32 + ...+ 3k =
3k+1 − 1

3− 1

Which is precisely the number of odd integers between 0 and 3k+1. Thus, indeed,
the cumulative distribution of dangerous angles is given by:

k⋃
i=0

φi =
π xk+1

3k+1
where: xk+1 =

{
all odd numbers between 0 and 3k+1

}
The different iterates can still be distinguished, though: determine the maxi-
mum power k in 3k by which an odd number is divisible. For example, in the set
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}, the subset {1, 5, 7, 11, 13, 17, 19, 23, 25}
belongs to iteration 3, the subset {3, 15, 21} belongs to iteration 2, the subset
{9} belongs to iteration 1. In general, with the n-th iteration, numbers which
are divisble by 3n−k belong to the k-th iteration.
A slightly different setup is to start with the dangerous value y0 = 0 and the
corresponding angle:

cos(φ0) =
1
2
y0 − 1 = −1 =⇒ φ0 = π

Herewith the first iteration becomes:

φ1 =
{
π

3
,

2π
3
− π

3
,

2π
3

+
π

3

}
= π

{
1
3
,

3
3

}
Instead of the zero’th. And the second iteration becomes:

φ2 =
{
π

9
,

2π
3
− π

9
,

2π
3

+
π

9
,
π

3
, π

}
= π

{
1
9
,

3
9
,

5
9
,

7
9
,

9
9

}
Instead of the first. And so on and so forth. Herewith we find all odd fractions
in one sweep, up and including a last one, which is equal to 3n/3n = 1 .
So far so good for the Dangerous domain with TripleGrid Refinement. Let the
iterand yk be in the Safe domain, meaning that yk > 4. Then it is obvious
that, with TripleGrid Coarsening, the iterand yk+1 = yk(yk − 3)2 will again be
greater than 4 and hence in the Safe domain. But is the reverse also true? Let
yk > 4 and solve for yk+1 in:

yk+1(yk+1 − 3)2 = yk

Can we be certain then that yk+1 > 4 as well? Yes we can. The discriminant
of this cubic, as we have seen already, is: D = 27.yk(4− yk) . It is negative for
yk > 4, meaning that the corresponding cubic has two complex conjugate and
one real solution. In our case, the real solution is the one that really counts. It
is found by solving for the corresponding hyperbolic angle 3pk+1 = pk and then
find yk+1 = 2 + 2 cosh(pk+1) , which is definitely greater than 4.

17

Chebyshev Polynomials

Let’s talk a minute about my article named Cosine Expansions, which is found
at the location below:

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/cospower.pdf

Why has nobody told us that the cosine power series in that article, as well as
in the current one, are actually Chebyshev Polynomials of the First kind?

http://en.wikipedia.org/wiki/Chebyshev_polynomial

And that the definition which comes most close to the employment in these two
contexts is:

Tn(x) =
{

cos(n arccos(x)) for − 1 ≤ x ≤ +1
cosh(n arccosh(x)) for x ≥ +1

An immediate corollary is the composite identity (or the ”nesting property”):

Tn(Tm(x)) = Tn.m(x)

Lemma. The following holds for the trigonometric as well as for the hyperbolic
cosine:

cos(α+ β) + cos(α− β) = 2 cos(α) cos(β)
cosh(α+ β) + cosh(α− β) = 2 cosh(α) cosh(β)

Proof. Add the following equations together.
For the trigonometric case:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)
cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

For the hyperbolic case:

cosh(α+ β) = cosh(α) cosh(β) + sinh(α) sinh(β)
cosh(α− β) = cosh(α) cosh(β)− sinh(α) sinh(β)

Theorem.
Tn+1(x) + Tn−1(x) = 2xTn(x)

Proof. Employ the lemma for α = nθ and β = θ:

cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(nθ) cos(θ)
cosh((n+ 1)θ) + cosh((n− 1)θ) = 2 cosh(nθ) cosh(θ)

And substitute θ = arccos(x)) or θ = arccosh(x)) respectively. This gives:

cos((n+ 1) arccos(x)) + cos((n− 1) arccos(x)) = 2x cos(n arccos(x))
cosh((n+ 1) arccosh(x)) + cosh((n− 1) arccosh(x)) = 2x cosh(n arccosh(x))

18

In short:

Tn+1(x) + Tn−1(x) = 2xTn(x) ⇐⇒ Tn+1(x) = 2xTn(x)− Tn−1(x)

The latter is exactly the standard recursion formula for Chebyshev Polynmials.
Its initial values are:

T0(x) = cos[h](0 arccos[h](x)) = 1
T1(x) = cos[h](1 arccos[h](x)) = x

Herewith we find, for the Chebyshev Polynomials up to order 5:

T2(x) = 2xx− 1 = 2x2 − 1
T3(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1
T5(x) = 2x(8x4 − 8x2 + 1)− (4x3 − 3x) = 16x5 − 20x3 + 5x

Now we could define Han de Bruijn’s Polynomials Bn(y) by:

Bn(y) = 2Tn(y/2− 1) + 2

Herewith we find:

B0(y) = 2 + 2 = 4
B1(y) = 2(y/2− 1) + 2 = y

B2(y) = 4(y/2− 1)2 − 2 + 2 = (y − 2)2

B3(y) = 8(y/2− 1)3 − 6(y/2− 1) + 2 = (y − 2)3 − 3(y − 2) + 2 = y(y − 3)2

Thus the DoubleGrid and TripleGrid Coursening iterands are described by the
polynomials B2(y) and B3(y) respectively.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.

19

