MultiGrid Calculus

Author: Han de Bruijn (1999)
Latest revision: 2004/11/03

The well-known Newton-Rhapson algorithm is used as a starting point for still
another method for inverting tri-diagonal matrices. It is shown that this method
is closely related to MultiGrid algorithms. The notion of Persistent Properties
is developed. The quotient of the off-diagonal matrix coefficients proves to be
an exponential function of the grid spacing. The behaviour of a product of the
matrix coefficients can be understood in full detail, with help of a Connection
to Trigonometry in a dangerous domain and a Hyperbolic Connection in a safe
domain. The safe domain is quite distinct from the dangerous one. It is shown
that all safe solutions form a sampling of the analytical solutions of the second
order linear ODE (Ordinary Differential Equation). But it is demanded that
the discriminant of this ODE is positive or zero. The matrix coefficients can be
expressed in the coefficients of the ODE and the grid spacing.

Newton-Rhapson algorithm

The Newton-Rhapson method is a numerical algorithm for finding zeros p of a
function f(z). The gist of the method is to draw successive tangent lines and
determine where these lines intersect the x-axis (see figure on next page):

y— f(pn) = f'(pn).(x —pp) where y=0 and z=ppy1 =

Pn+1 = Pn — M
f'(Pn)
Thereby assuming that the whole process will be convergent.
The method can be used for performing a division without actually performing
a division. (I found this in a reader about Numerical Analysis.) The equation

to be searched for its roots, in this case, is given by:

— =q
T

Substitute f(z) = 1/x — a in the above algorithm. Resulting in:

Pnt1 = Pn — % =pn—(—pn+ a-pi) = Pnt1=2.pn — a.pi
It is well known that the Newton-Rhapson method, if it converges, then it does
so quadratically, meaning that the inverse 1/a can be found rather quickly. The
algorithm has been used in the old days, on computers which had no floating
point division instruction available.

y(py)

y(Rpy)

y(x) =Llx-A

Thus by employing the Newton-Rhapson algorithm, the inverse of a number can
be found with quadratic speed, by performing solely additions and multiplica-
tions. Armed with this knowledge, let’s make the transition from numbers to
matrices. Determining the inverse of a matrix, filled with many numbers, seems
to be much more like a challenge anyway.

Let the iterative process for matrices be defined by:

Py=1 and Pni1=2.P,—AP,.P,

Here I is the unity matrix, A is the matrix to be inverted and P, are the suc-
cessive iterands, which should converge to the inverse matrix A~!.

An 7initial guess” or ”preconditioner” T may be chosen instead of the unity ma-
trix I. Such a preconditioner 7' may be equal to the inverse of the main diagonal
of A, if things are to be kept simple. This effectively means that each row of A
(and each element of the right hand side b) is divided by the accompanying main
diagonal element. The result is a system of equations which is commonly called
normed. In a normed system of equations, all elements of the main diagonal are
equal to 1. With other words: the main diagonal is equal to the identity matrix.
It is noted that an eventual symmetry of A will be destroyed by carrying out
this process of normalization. However, it will be assumed below, for the case
of simplicity, that the starting point is just the unity matrix. Hence T' = I.

Theorem:
Let M=(I—A) or A=(I—M) then: P,=(I—-M?*)A""

Proof by induction:

Py = I=AA =(-M)A"
Py = (1 - MQ"“) A1
- (1 _ M2"'2) Al

(1= M) (14 a") a7

= because all matrices are mutually commutative:
(1-m) a2 —a (1= M) .47

= P,(20-AP,)=2P,— AP,.P,

Let m = 2™, then:
Py=(I—-M™).(I1- M)

For numbers, this would be the sum of a Geometric Series:

(I-M™).(I-M)"'=T+M+M>+M+M+M +M+..+M™ ")

For matrices, this Geometric Series turns out to be equivalent to an iterative
”incremental Jacobi” solution method, as will be explained in Appendix I.
But there also does exist a product of terms, called the Euler expansion:

(I =M™).(I-M)~" =T +M™?).(I-M™?).(I-M)"" =
(I +M™?)(I+M™*(I—M™*(I M) =
(I 4+ M™2).(I+ M™*). . (I 4+ M?).(I+M).(I-M).(I-M)"'=
(I +M™2) (I +M™*). . (I+ M8).(I+M*.(I+M?).(I+M)

Let the system of equations to be solved be given by A.w = b. Using the above
sequences, we can write:

Po=(I—-M*")A"' — A =0U-M")'Pb

= (I—=M*")" L (I +M™2).(T+M™*). . (I+M3).(I+M*).(I+M?).(I+M)b
Another way of looking at this is the following;:

I-—M)y =T =My L(T+M) " (I+M)=(I-M)"(I+M)=
(I=M*)"N(I+M*)" N (I +M?*).(I+M)=(1-M*"(I+M?).(I+M)

With other words:

w=(I—-M) b=I—-M) " "(I+M) " " (I+M).b=1I—-M) (I+M)b
Define b := (I + M).b and M := M?. Then again:

w=T~M)" b=>0-M)""I+M)" "I +M)b=(I—-M)""(I+M)b

And this process can be repeated until we find a way to determine (I — M)~1,
preferrably without continuing the iterations ad infinitum. However, is there
any reason to believe that 32 is more amenable, one way or another, than M?

2 X 2 matrix

The method outlined so far will be applied to the simplest non-trivial example,
which is a matrix of rank 2. The system of equations to be solved is:

EHEH

Assume that a # 0 and d # 0. At first, the equations will be normed:

Lo L =L

The matrix M is formed by subtracting from the identity matrix:

e G

—c/d 0
Hence: }
I+ M= [—i/d _li/a
And:

M? = { 73/(1 _%/a } ‘ { f((;)/d —%/a } - b/addd C/d(.)b/a]

Hence:

o { 1—b/a.c/d 0]

0 1—¢/db/a

Nothing is simpler than determining the inverse of a diagonal matrix:

N1 1/(1—="b/a.c/d 0
(I = M) :{ / 0/ 9 1/(1c/d.b/a)}

Hence:
v IR YA B Bl

e | o 1]

It is easily recognized that this is exactly the inverse of:

1 b/a
c/d 1
It is concluded that any system of 2 equations with 2 unknowns is solved ezactly

by the Newton-Rhapson method (provided that the main diagonal elements are
non-zero and the matrix is non-singular).

MultiGrid

A possible implementation of the Newton-Rhapson method for linear equations
is triggered by the following observation. Consider a one-dimensional grid:
8y, 83 8 S5 856 367 &g 859
FOETII SV G-I SV S e ST A i SE PR

Then, in almost all cases, only adjacent grid-points will be connected by certain

(matrix) coefficients. This gives rise to a tri-diagonal system of equations. Let’s
assume beforehand that the equations are always normed (which means that the
elements of the main diagonal must be non-zero from the start). Thus, without
loss of generality, we may assume:

1 a2
a1 1 a3
azz 1 as
agz 1 ays
A: as54 1 ase
ags 1 aer
are 1 ars
agr 1 agg

L a/98 1 .
The matrix M is then formed by M =1 — A:
S s -
—agy 0 —as23
—as2 0 —az4
—a43 0 —ags
—ase 0 —ase
—ags 0 —aer
—arg 0 —arg
—agr 0 —ag
L —aog 0 _

And the matrix I — M? can be computed. It turns out to be of the form:

air 0 a3
0 a2 0 ay
azr1 0 a3z 0 aszs
asz 0 asa 0 age
as3 0 ass 0 asr
ags 0 aes 0 ags
ars 0 arr 0 arp
ase 0 ass 0
agr 0 agy

It is observed now that all even and odd indices have become uncoupled. The
variables can be permuted and the equations be rearranged accordingly:

ail ais \
asl a33 ass ‘
as3 ass Qsy \
ars arr arg |
agy agy |

\ azz d24

| Q42 G44 Q46

| ags Qg6 Qg8
| age Gss

The new equations system is of the form:

Ay O

0 A
Block A; corresponds with a restriction of the grid to odd-numbered points,
block As corresponds with a restriction of the grid to even-numbered points,

as depicted in the figure below. Such a configuration of coarsened grids will be
called a MultiGrid in the sequel.

1 2 3 4 5 6 7 8 9
@ @ — @ — @ — @ —
@ ~ @ ~ @ ~ @ ~ g

Once having a blocked system of equations, each block can be solved quite
independently of the other. Thus in fact we have two independent systems
of equations, A; and As, each of them having the same structure as the original
system A. These equations shall be renormalized at each step, thus assuring that
also the new matrices have a diagonal equal to the identity. Probably we can
apply the same procedure again and again, thereby reducing any tri-diagonal
matrix into ever smaller blocks, which will finally become just single numbers
along the main diagonal. After normalization of the latter we should be finished.
A well documented implementation of the Newton-Rhapson MultiGrid method,
programmed in (Turbo) Pascal, is found in Appendix II.

Direct Solver

We will take a closer look at the procedure which forms the matrix (1 — M?) out
of the tri-diagonal matrix A. It is assumed that the tri-diagonal system matrix
A has been (re)normalized. Then the general form of such a matrix is:

a43/ 044 1 45/ 044
as4/ass 1 ase/ass =A=I-M
ags/ ase 1 ag7/aee

The matrix M? is calculated. Concentrate on row (5) and columns (4, 5, 6):

a43 0 Q45
: : 44 44
_ G54 0 — as6 _ G54 0 _ Gs6
ass as5 as5 aes ass agr
_ 00 0 _ o
66 aee
54 (43 0 54 (45 + a56 A65 0 as56 A67

as5 Q44 as5 Q44 G55 66 ass 66
Completing further one step of the Newton-Rhapson procedure results in:

(54 043 A54 A45 as56 Aes 0 ase Ae7

I-M?= == 0 1-——=_ 2=
ass Aqq ass Q44 ass aee ass aee

It is shown in the following sequence that a Newton Rhapson step for coarsening
the grid is equivalent with an Gaussian elimination step for even grid points.
Hence the method as a whole is equivalent with a direct solution method for the
linear equations system. This explains why an exact solution is found in the
first place.

43/ Gaa 1 45/ Gaa
asa/ass 1 ase/ass — A
ags /aee 1 agz/ 66

Use the first and the last row for pivoting the middle row. This is equivalent
with:

Ty = —a43/044.T5 — a5/ 0a14.T5

T = —aes/as6.T5 — a7/ ace.Ir

Substitute in the row with index (5):

CL54/0,55.T4 + 1.T5 + a56/a55.T5 =0 —

as54 43 45 ase g5 ae7
— {—TS - —T5] +T5+ — [—T5 - —T7]
ass Q44 Q44 ass a66 66
U54 0a3 7y o [1 454 Q45 As6 aaa} T 956 Q67 _
=—— T3 [- =T, =
as55 A44 a55 44 as55 66 as5 Ae6

When written in matrix form, the abovementioned equivalence becomes evident:

T3

_ G54 Q43 G54 Q45 56 d65) 456 67 Ty
ass 44 as5 A44 G55 466 ass5 (66 15

) Ty

T

Persistent Properties

Suppose we have a uniform grid and let j > 4. Then all coeflicients a;; may
be assumed to be equal to each other. The same is true for all coefficients a;;.
Let a;; = —a and aj; = —b. Also assume that the system matrix S has been
(re)normalized. Then the general form of such a matrix is:

The matrix M2 is calculated:

b 2.ab a?
b2 2.ab a? = M?
b? 2.a.b a?

It is seen that, at a coarser grid, the coefficients are obtained by travelling
two steps in any direction on the refined grid, multiplying the accompanying
matrix-coefficients with each other and adding together the results of each of the
possible paths. (This vaguely reminds to a piece of QuantumElectroDynamics.)
Hence, travelling from (5) to (4) gives a contribution b.b, travelling from (5) to
(7) gives a contribution a.a and travelling from (5) to (5) two times back and
forth gives a contribution a.b + b.a:

1 2 3 4 __a_ 5_b 6 7 8 9

° o < o—%—o—s—o > ® °
A a

¢ < b.b 2.‘a_b a_aj *

Completing further one step of the Newton-Rhapson procedure results in:

b2 1—2.a.b —a?
—p2 1—2.a.b —a? =I-M?*=9
—b? 1—2.a.b —a?

Where S’ is a blocked matrix, corresponding with 2 coarser grids. Now it is
sensible to require that (I — M?), after re-normalization, has properties which
are more or less alike those of (I—M). Essentially the same kind of discretization
scheme should be used at any of the coarser or refined grids. It’s useful to give
a name to the phenomenon. If certain properties of a scheme remain the same

10

at any of the MultiGrids, then such Properties will be called Persistent.
After renormalization, the off-diagonal coefficients become:
2 b2
@ =—2% and ¥=—""_
1-—2.a.b 1-—2.a.b

Under the obvious assumption that 1 — 2.a.b # 0.
And we are ready to find our first persistent properties, though maybe they are
somewhat trivial:

a=0 <= d =0 and b=0 <= b =0

So far so good. Let’s consider cases where a # 0 and b # 0. From the coarsening
formulas for a and b, it can then be inferred immediately that:

/ 2

a a
y Y
While multiplying a’ and b’ gives:
2.b2
W=—2" 50
“ 1= 2.a0)?

Four different cases may be distinguished:

a>0 and b<0 a<0 and b>0
a<0 and b<O0 a>0 and b>0

The formulas for the quotient and the product show that only a positive product
and a positive quotient of the off-diagonal coefficients can be actually persistent
through coarser multigrids. Hence combinations a > 0,0 < 0 and a < 0,b >
0 are already out of the question. Thus, the only properties which may be
invariant for grid coarsening are: both coefficients negative or both coefficients
positive. We are ready now to infer one of the inverse functions, which is
applicable to grid refinement instead of grid coarsening:

a a? a a’

voE T 3 \w

Substituting a = /a’/b'.b into b’ = b?/(1 — 2.a.b) leads to an equation from
which b can be solved:

V=02/(1-2ab) = b —2abb=02 = Y —2./d/bbl =D

= V=2V WP+ = V=0 (1+2Vadb)>0

Almost the same can be done for a:

a =a’(1+2Va.V)>0

11

Herewith also the condition a < 0,b < 0 is ruled out as a possible persistent
property, leaving a > 0,0 > 0 as the only possibility left. We conclude that
the following is a necessary condition for persistence, given —a and —b as the
off-diagonal elements in a (normed) tri-diagonal system, while admitting again
the special cases ¢ = 0 and/or b = 0:

a>0 and b>0

The well known and commonly accepted ”rule of positive coefficients” (Patankar
1980) is found back herewith.

The inverse of mesh coarsening, grid refinement, seems to be at least equally
important as the former. Given the discretization on a coarser grid, how can we
obtain then the discretization on a finer grid? It is clear that grid refinement,
in general, can be quite ambiguous. That’s one reason why, probably, we shall
have to restrict ourselves to uniform grids.

Inverse functions can be derived for the off-diagonal coefficients as such:

/
a’ = a2 1—2.a.b < a = ai
/() \/ 1+ 2+/a.b

/ 2 b’
b=0"/(1—2.ab) <—= b=,—F—m—
/() 1+24ad .V

Would it be possible that the coefficients on the fine grid are not different at all
from those on the coarse grid? The answer on this question is affirmative:

a=a?/(1-2.ab) = 1-2ab=a
b=0?/(1-2.ab) = 1-2.ab=b
We have divided by a and b and it should be noted that ¢ = 0 and/or b =0 is

also a solution. In the asymmetric case we may assume a > 0 , b = 0 or vice
versa, resulting in:
b=0 = a=d> = a=1

a=0 = b=0b =— b=1

For all other cases, it can be concluded, in general, that a = b. Substitute this
in one of the equations:

1 1 1 1
l1-2aa=a = d+-a—==(a+)a-—=)=0 = a==
2 2 2 2

The other solution ¢ = —1 is not persistent because of the rule of positive
coefficients. Thus we have four cases for which the (bulk) coefficients are the

12

same (and of course persistent) on all of the MultiGrids:
a=b=0 Identity matrix
a=0,b=1 Lower diagonal matrix
a=1,b=0 Upper diagonal matrix
1 . .
a=b= 3 Symmetric matrix
Now take the sum of the off-diagonal coefficients:
2 b2 / 1%
CL, + b’ — L “— a+ b= M
1-—2.a.b 142.:/a b

Rewrite the formula for grid coarsening as follows:
(a+b)%—2.a.b
1-2.a.b

Then it is clear that all of the following properties are persistent at coarsened
as well as refined grids:

a+b =

a+b<1 = ad +b <1
a+b=1 = a +b =1
a+b>1 = a+b>1

One subject we have barely touched is the sign of the denominator, which arises
as soon as the matrix I — M? is normed in the Newton-Rhapson procedure:

1—2.a.b#0
Using the rule of positive coefficients and the coarsening formulas for @’ and ¥,
we can even write: 1
1-2.ab>0 = ab< >

It can be shown that this property is not a persistent one:
a’.b? _ 1—4.(a.b) +4.(a.b)* — (a.b)*
(1 —2.a.b)? (1 —2.a.b)?
3[(a.b)?* —4/3.(a.b) +1/3] >0 <= [ab—1][a.b—1/3]>0
The accompanying function is a parabola:

2\ 2 4+3
= xr— — _— —_
Y 3 979

Which has a minimum for (z,y) = (2/3, —1/9). While the left hand side of the
preceding expression is positive for a’.b’ < 1/2, the right hand side is positive
for a.b < 1/3 or a.b > 1. The combined outcome of the two is: a.b < 1/3 < 1/2.
Further grid coarsening gives rise to an equation of the 4th order, at least. So
we have no idea (yet) how these findings may eventually lead to a persistent
property for the denominators.

0<1=2db=1- >0 <<=

13

Quotient Function

Suppose the off-diagonal coefficients at the fine grid are a and b, and the off-
diagonal coefficients at the coarser grid are a’ and ', then we know from the
chapter about ”Persistent Schemes” that the following relationships hold:

5= () e f=F

It is inferred that the relative magnitude of the coefficients a and b is persistent
through grid coarsening and grid refinement:

a<b = a <V
a=1>b <— a =V
a>b = a >v

With grid coarsening, the fraction a/b is subject to the function 2’ = x2. The
outcome of which can be subject to another grid coarsening z” = 2’2, to another

grid coarsening " = 2’ and so on and so forth. Resulting in an expression:

2
22 2 2 . 2N
((:p)) = limz® =0,1,00 for z<l,z=1,z>1
N—oo

With grid refinement, the fraction a/b is subject to the function z/ = /.
The outcome of which can be subject to another grid refinement z” = va/, t
another grid refinement z”/ = v’ and so on and so forth. Resulting in an

expression:

\/...\/E:A;im NVr=1 for >0

y(x) = sart(x)

14

It is kind of a custom to say, nowadays, that the function y = /= has an
attractor for x = y = 1. The practical meaning is that, at infinitely refined
grids, a and b will become equal: @ = b for grid — oo-dense. (Provided that
a # 0 and b # 0; for if else they will remain zero forever.) The point (1,1) itself
is a stable stationary point: any point in the neighbourhood will become more
and more ”equal” to it and the point (1,1) itself does not change with further
iterations.

It is seen, on the contrary, that the point x = y = 1 of the inverse function
y = 22 is not an attractor, but more like a repeller instead. Values smaller
than 1 are pushed towards zero, while values greater that 1 are pushed towards
infinity. The point x = y = 1 itself is a stationary point, but it is highly
unstable.

If a grid becomes 2 times coarser, then the new quotient of ¢ and b will be
related to the old one by: (a/b) := (a/b)?. If a grid becomes 1/2 times coarser,
then the new quotient of the off-diagonal elements will be related to the old one
by: (a/b) := (a/b)*/?. We could also have written:

a a a]1/2

b(z.dz):[b(dx)r and %(%dm):[g(dz)

We seek to generalize these results, where a relationship as the following comes
into mind:

p

g (p.dx) = E (dw)} for any real number p

An interpretation for negative numbers p can be obtained as follows. Consider
a one-dimensional grid and suppose that it is traversed in the reverse direction.
Thus, instead of numbering grid points from the left to the right, they are num-
bered from the right to the left. By this "inverse” transformation, any matrix
coefficient a;; with ¢ > j will be mapped upon a coefficient a;; and any coeffi-
cient a;; will be mapped upon a matrix coefficient a;;. Using uniform meshes,
we see that coefficients a are transformed into coefficients b and coefficients b
are transformed into coefficients a. This means that fractions a/b will be trans-
formed into fractions b/a and vice versa. But travelling the grid in reverse order
also means that we are using increments (—dz) instead of increments (4dx).
Therefore we can write:

1 a -1
¢(—dr) = g(dm) = [Lan)] " ana g(—dq;) = Y(am) = E(daz)}
For dx = 0 it follows that —dx = +dz, hence:
a b a b
5(0)=-(0) ;0 =-0)=1

This is in close agreement with the observation that the quotient of the off-
diagonal terms has an attractor (0, 1) in the function for mesh refinement.

15

It could be interesting to study the quotient of the off-diagonal coefficients, for
the limiting case of an immensely refined grid. It is seen in the above figure that
the refinement function becomes more and more dense in the neighbourhood of
its attractor. It is suspected that the function may be continuous, or even
differentiable, in this region. Assume that for a certain mesh-spacing K there
exists a certain number L such that:

2(K)=1L

a

On ground of the theory as it has been developed so far, one can safely write:

N
b b K b (K\]° b (K ~
“(K)=-(2V.=%] = |- (= =L ~ (=) =12
=i ()= L()] 2 = L)
By definition, the fraction b/a is continuous for its argument = 0 if there does
exist a number J(¢) in such a way that, for any positive e:

_(5) —

a

(0)‘<e

But we know that: b/a(0) = 1. Identify § = K/2%, then the condition for
continuity will be fulfilled if:

E(5)—1’=’Ll/2N—1’<e —
a

V2 _1<e = L<(1+e¥ if L>1
1-LY?" <e «— L>01-6¢2 if L<1

< In(L) < 2N.n(1+¢) (positive) } s 9N In(L)

< In(L)>2N.n(1—¢€) (negative) ” In(1te)

Where the + sign is such that the quotient of the two logarithms is always
positive (: 1+ e for L > 1,1 — € for L < 1). We see that, with a suitable choice
of N = N(e):

5(e) = K <Kln(1:|:e)

2N In(L) a9

a

(0)’<e

Which proves that the refinement function for the quotient of the off-diagonal
elements is continuous in its attractor.
Now assume that the number € has been selected in such a way that:

e=LY2" _1 if L>1

— l+e=ILY?" — N
e=1—LY? if L<I1

16

Then we find two expressions for the derivative of the Quotient Function in its
attractor (0,1):

In(l+e€) b b b e.ln(L)
In(l—¢) b b b e.ln(L)
By continuously enlarging N, we find that ¢ — 0 and:
+e.n(L) In(L)/K In(L)/K _ In(L)

e In(l+e).K - [In(14e) —In(1)] /(Fe) In/(t)]i=1 K

This proves that the Quotient Function has an unique derivative in (0, 1). Now
it should also be possible to devise a Taylor expansion around the attractor:

2 (j—fj) _ %(o)+ H/(O) =14 H'(o) o

Herewith we can write:

HEYCIHTEIN

A relationship which will become better and better, as the grid becomes more
and more refined. In the limiting case, of a ”continuous” mesh, we find:

N
b bl 421 el (0) de
o (42) = Jim [1 + H © 2—14 =¢
As far a we can see, no special meaning should be attached to the term [b/a]’(0).
We found that it is equal to:

b In(L

a K

But L as well as K can be anything, since we assumed that, for a certain mesh
spacing K, there exists a starting point L such that b/a(K) = L. If we simply
put the factor equal to some arbitrary constant P := In(L)/K, then:

b

2 (dz) = ePde = [42/K apq %(dm) _ g~ Pda
a

And it is easily shown that known persistence properties for the off-diagonal
quotients remain completely unaffected:

([Zn)” = oy = erean - [

a

17

a

([9]((1@)1/2 _ (eP_dz)1/2 — P(dz/2) _ [S} (dz/2)

Now, indeed, we find the desired generalization of these properties:

b

p
= (p.dz) = ePPde = [ep'dm]p = [9 (dm)} for any real p
a a

Evidence once more

In a previous section, called ’Quotient Function’, evidence has been gathered
for the following theorem:

b (dp) = eb/aV @ do

a
I feel not entirely comfortable with the ”proof’ in this section, though. The
task could be re-formulated as follows: given f(2.z) = f(z).f(z), continuous
in z, prove the theorem that: f(x) = exp(Pzx). It is clear that the theorem
is a sufficient condition for f(2.2) = f(x).f(z) being true. But is it also a
necessary condition? Up to now, the proof has been accomplished by - sort of -
transfinite induction. Truth has been established for grid spacings approaching
zero - the domain of Calculus - and then, while working backwards, for finite
sized grid spacings, like in Numerical Analysis. In terms of Chaos Theory: the
theorem is proved for the Analytical Attractor in a/b(0) = 1 and then very
much extrapolated. Therefore trying to arrive at the same result via some other
road seems to be worthwile the effort.
The end-result from the section 'Direct Solver’ is recalled in the first place:

T3

_ G54 Q43 G54 Q45 56065) 56 6T Ty
as5 Q44 as5 A44 Q55 G ass A6 T5

. . . Ts

17

Thus we see that the off-diagonal coefficients of the coarsened grid are given by:

;054043 d dho = ase ae7
a53———— an a57—_

a55 A44 as5 Ae6

Independent of the kind of mesh involved. Now imagine a piece of an 1-D mesh
again, but this time with a non-uniform grid spacing;:

18

By &5 B¢ Y
= ¢ = % ¢ o

. 4
°

Where we have arranged it in such a way that the distance between the vertices
(3) and (4) is equal to the distance between the vertices (6) and (7); and the
distance between the vertices (4) and (5) is equal to the distance between the
vertices (5) and (6). Furthermore it is assumed that the matrix coefficients are
only dependent upon these two distances, called:

distance 3_4 = distance g_7 = dx1

distance 4_5 = distance 5_g = dx2

If matrix elements which are at the left of the main diagonal are denoted as a
and matrix elements which are at the right of the main diagonal as b, as has
been done before, then it becomes readily evident that:

ag3 = a(dzxy) and apy = a(dzs)
ag7 = b(d$1> and ase = b(dl‘z)

Furthermore it follows that a4s = agg and:
ks = a(dzy + dzy) and al; = b(dzy + das)

Repeat:

as56 A67
! [
Ugp = ————— and gy = —

a54 43
as5 a66 ass A44

Hence the quotient of the off-diagonal coefficients of the coarsened grid can also
be written as follows:
a(dry +dze) a(dzy) a(dzs)

Herewith it is established that the quotient function is characterized by:

b b b
E(dwl +dx2) = (dl‘l)a(dl‘Q)

a
And we are triggered to pay some attention to functions which are characterized,
in general, by the following property:
flo+a)=fp)-fla)
A couple of other properties can be derived herefrom:

fl@=fla—p+p) =fla—p)-flp) = fla—p) = f(0)/f(p)
= flp-p)=f)/flp) = [f0)=1

19

Employing the hypothesis that f is a differentiable function and taking the limit
for dx — 0, we see that:

flz+dr) = f(z) _ f(x).f(dr) — f(dx)

f'(w) = dx - dz -
dr) —1 dz) — f(0
py L /A2 TO) gy
Giving a differential equation for f(z) which can be solved rather easily:
% =f(0)dr = In(f)=f(0)zx+c = f(z)=Ce/'@z=cl"0=

Where the boundary condition f(0) = 1 is employed in the last step. f/(0) = P
is an arbitrary constant. The result is in agreement with our conjecture that the
only possible Quotient Functions are, indeed, given by: a/b(dz) = exp(P.dx). If
the above proof is valid, then this conjecture has been turned into a theorem.

Some Stable Solutions

A Finite Difference scheme is associated with any (normed) tri-diagonal system
of equations in the following manner:

—b.Ti,]_ + Tz - CI,.TZ‘+1 =0

The equations, when put in this form, can be solved in a direct fashion. Let’s
try the most simple of all possible solutions: a constant. Substitution of T; = C'
gives:

—bC+C—-aC=0 = a+b=1
Assuming that C' # 0 (which would result in an even more trivial solution). It
is seen that a constant solution can be obtained only if (minus) the sum of the
off-diagonal elements is one.

The next trivial solution of the finite difference equation would be a straight
line. Substitute T; = C.i + D with D # 0 and C # 0, giving:

—b.[C(i—1)+ D]+ [Ci+D]—a.[C(i+1)+ D] =
Ci(-b+1—-a)+D(-b+1—-a)+(b—a)=0

Resulting in the same condition a + b = 1 , augmented with b —a = 0. It is
concluded that a linear solution can only be obtained for:

a:b:§

Let another possible solution be given as:

- (2)

20

And substitute. Then:

p\ i1 b\’ b it
OISO
a a a
(b/a) (~b.a/b+1—ab/a) = (b/a)'(~b+1—a) =0
Resulting again in the condition ¢ +b = 1 . A more general solution may be

cast into the form:)
b 2
T,-C (_> +D
a

Suppose that we have boundary conditions, like:
Ti=1 and Tn =0
Then the constants C' and D can be calculated explicitly, resulting in:

7= Y@ = O/ _ (/) — (b/a)" T

T Bl = (/N T 1= (bja)V]

This result is more general than it seems at first sight, because it may be multi-
plied with an arbitrary constant and another arbitrary constant may be added
to it, thus adapting it to quite arbitrary boundary conditions:

T; = (T1 — TN).TZ' + TN

It is recognized that the condition a + b = 1 plays a rather predominant role
in its relationship to the solutions which are found so far. The meaning of the
condition is that the sum of the row coefficients in the (normed) matrix equals
zero. Things are clarified further by writing the equations in a slightly different
manner:

T; = b.Ti—1 +aTip

Knowing that b > 0, a > 0 and a + b = 1. It is concluded therefrom that T; is
a weighted mean of its neighbouring values, which means that it will always lie
in between T;_; and T;1:

T; 1 <T;<Tjy1 or Tj31 <T;<Tj

Hence, irrespective of any boundary conditions, the function behaviour of the
numerical solution will be continuously decreasing or continuously increasing.
It shows no "wiggles”. Such a solution T; is commonly called stable. Thus, in
fact, we are in search here for Stable Solutions of the tri-diagonal equations. It
is remarked, in addition, that stability conditions, like @ + b = 1 for the 1-D
case, are well known and commonly accepted, as they belong to the ”Four Basic

21

Rules” in Patankar’s book (1980).
Having established stability, our Stable numerical Solution is recalled:

(b/a) " — (bfa)!

e (YR

Because, with help of the ”Quotient Function”, it can be cast now into the
following form:

eP-(i-1).dz _ ,P.(N-1).dz oPx _ PL

T; = [P (N-Dds = T(z)=

1 —ePL

Where z = (i — 1).dx is the 1-D coordinate and L is the total length of the
mesh. Herewith, the general Stable (: a + b = 1) numerical Solution becomes
quite alike an Analytical one:

Pz o PL
T(@)=(To-TL) 1 pz +1t
This solution is applicable to 1-D problems of Convection and Diffusion. It is
concluded therefrom that any tri-diagonal system of linear equations, where the
off-diagonal elements are negative and the rows sum up to zero, is actually a
blueprint for Convection and Diffusion.
The number P.L in the exponents is recognized as the Péchlet number. In
real life, the dimensionless Péchlet number has the following meaning: Pe =
p.c.v.L/\, where p = density (kg/m?), ¢ = heat capacity (J/kg/K), v = velocity
(m/s) and A = thermal conductivity (J/s/m/K).
For the problem of 1-D Convection and Diffusion, the off-diagonal coefficients
a and b can be written in a form which will be useful in the subsequent work.
Define € by:

e=b—a while knowing a+b=1

By addition and subtraction we find:

1 1
b:§(1—|—6) and a= 5(1—6) where —1<e<+1
It is remarked that the range of € is quite restricted in the first place. Further-
more it can be argued that, as the grid spacing becomes smaller and smaller
with successive refinements of the grid, then e also must become smaller and
smaller: 1

—€ a
=—(dz—0 1
1+e€ b(—0) -
With help of a clever trick, we can express € solely in quotients of the off-diagonal
coefficients. Divide namely nominator and denominator by v/a.b in:

_ b—a A /b/a_ /a/b B e+P/2.dz _ efP/2.dm
€= bta = /_b/a_l_ /a/b T etP/2.dx + e—P/2.dz

22

The latter expression is recognized as a Hyperbolic Tangent: tanh(P/2.dx) , as
will be seen in one of the subsequent paragraphs. A sketch of the tanh function
reveals that ¢ will have the following properties:

lim e(P)=-1 e(0)=0 lim ¢(P)=+1

P——o0 P—+oco
When cast in Finite Element form, the analytical Convection-Diffusion scheme
reads as follows:
v o] [+ ek

The trace of any such element matrix is 1. Double check for pure diffusion and
for pure convection, respectively:

rev = (% 3)-[7 2]

e = (53[5 2

+a —a
—b +b

-b +b -1 +1
. +a —a | | +1 -1
P=-0 = [—b-m}_[0 o}

The latter expressions are demanding for a boundary condition at the inlets
x =0 and z = L respectively. Otherwise, the temperature T'(z) at these places
would be undefined.

Product Function

The product of the off-diagonal coefficients at the coarsened grid can be expressed
as a function of the product of the off-diagonal terms at the refined grid:

d b a? b2 _ a.b 2
YT 1—-2ab1—2ab \1-2.a.b

2
Y= <1 x2) where y=a.tl and z=a.b
— 2z

At first, we make a sketch of the function which relates the product a’.b’ on
the finer grid to the product a.b on the coarser grid. That is, the function
y = 2%/(1—2.2)? . The function has two asymptotes, a vertical one for x = 1/2
(denominator = 0) and a horizontal one for y = 1/4:

2 2
. T . 1 1
lim = lim —] ==
z—+oo \ 1 — 2.2 z—too \ 2 —1/x 4

23

We want to make a small step aside now, and ask attention for a subject which
is on the experimental side and therefore a bit different from the mainstream
theoretical argument. While having a look at the graphics, the reader may
wonder how these pictures were created. The answer is that most of the figures
were composed by making use of native PostScript. This seems to be weird
at first sight, but it should be remarked here that PostScript is, in fact, a full
blown programming language. (Moreover, it is a language which offers no spe-
cial difficulties to someone who has been an experienced FORTH programmer.)
Much of the theory in this document has been accompanied by numerical ex-
periments. These experiments were implemented and carried out a great deal
in (Turbo) Pascal. But, since PostScript is a programming language, nothing
has prevented us from having carried out some of these numerical experiments
entirely in PostScript. That’s why the source code of the pictures in this docu-
ment actually contain more information than may be displayed. It is suggested
herewith that the PSF (PostScriptFile) programs, as delivered with this doc-
ument, may be interesting as such. Having said this, let’s return to theory,
starting with the figure below.

y(X) =x"2/(1-2.x)"2

va

@] V4 12 1 X

With grid coarsening, the function is used iteratively. Get started with a certain

24

value of z and the accompanying value of y can be calculated. But this value of
y serves as the next x value for the function ¥, as soon as the grid is coarsened
again. In general, we obtain an assembly of the form:

y(y (v (y (y---y(2)))))

It may be questioned if there exist values of x which are are such that, after
coarsening of the grid, the same value 2 = y(z) is acquired again. Such values
will remain the same during all stages of the grid coarsening process. For this
reason, such values of x are called stationary or invariant points of the function.
They are found as follows:

2
I:(Z.::l) = 2=0 or 1L.2z—-1)?=2 =

5
xz—zm—i—l:(aj—l)(x—z)zo

Herewith invariant points are found to be:
1
r=0 or x=1 or I:Z

The value 1/3, being useful because of the condition a.b < 1/3 < 1/2, is mapped

on the stationary value 1:
13 N\,
1-21/3)

But the above list of invariant points is not exhaustive, another possibility being
that there exist two points instead of one. After having obtained the point with
label (1) in one iteration, the point with label (2) is reached in the next iteration.
Then the point with label (1) is obtained again, and so on and so forth. We
must solve an equation with 1/z instead of x:

1 2
g — @Qz-12=2% = B3—422+42-1=0
T 2z —1

An equation of the third degree. However, we already know that z = 1/2 =1
must be a solution of it. Hence we can perform a division:

® —da? +4x -1

22 —3x4+41=0
r—1

The roots of the equation are herewith found to be:

+ ~ 2.618 or x3= =~ (0.382

3
r1 =1 or x2:§

[\
S
N w
[\
S

25

Indeed: 21 = 1/x1 , 22 = 1/x3 and 23 = 1/x2. See the above figure.

Another interesting property of the invariant point (1/4,1/4) can be found as
follows. Consider the the expression (1 — 4.a.b). We will derive a persistent
property for it, by considering the expression while refining the mesh. We have
found, in the previous chapter, that the product of the off-diagonal matrix
coefficients is transformed as follows:

VAl
142.V/db

Herewith we find that 1 — 4.a.b is also transformed, according to:
1+ 2V/aW — 4V (1 - 2.@) (1 + 2.@)
RN (1+2.\/W>2
(1 + 2.@)2

Meaning that the sign of the 1 — 4.a.b is insensitive/invariant for for mesh
refinement, persistent through multigrids:

a.b

1—4.a.b=

1—4ab>0 «<— 1—-4.4d0 >0
1—4.ab<0 <= 1—-44V<0

Thus if the expression is positive, then it remains positive. And if it is negative,
then it remains negative. Last but not least, if it is zero, then it remains zero, the
latter corresponding with the invariance of (1/4,1/4). This may be translated
as follows:

a.b< and a.b >

1
= 'y > =
“r =7

e
e

1 = db<
4

Hence the point (1/4,1/4) serves as a boundary between two domains: points
in the domain z > 1/4 will always give rise to other points & with > 1/4,
while points in the domain z < 1/4 will always give rise to other points = with
x < 1/4. That’s why discriminant is probably a good name for the expression
(1—4.a.b). With the sign of the discriminant, one can discriminate between two
seemingly distinct domains of interest in (a.b)-space.

The properties ' < x or 2’ > x are persistent at MultiGrids. Let’s prove it:

v =2?/(1-22)* <z <= l1-dat+da’>2 <= 2°-5/42+1/4>0

The accompanying function is a parabola:
5\° 2 16
= €r — — _— — —_—
Y 8) 6464

26

Which has a minimum for (z,y) = (5/8,—9/64). Tt is positive for:

(x—l)(m—i)>0

Ignoring the conditions z > 1 and x < 1, while x < 1/3 < 1/2, results in:

1 1
r>1 = z <7 : <1 <= x>

This means that products smaller than 1/4 will become bigger and products
bigger than 1/4 will become smaller with grid refinement; any product of coeffi-
cients will approximate 1/4 closer with successive refinement at uniform Multi-
Grids. We have seen that the latter outcome is persistent through further grid
refinement. With other words, the point 1/4 is a stationary point (attractor)
of the Product Function for grid refinement. It can also be said that 1/4 repels
the products during the reverse process, of grid coarsening.

y(X) =x"2/(1-2.x)"2
y
\
\\
4 [
[e] 14" "1/2 X

27

During a coarsening process, points 2 may give rise to other points = y(z)
which are such that z approaches the value 1/2, in the end. For this value the
denominator (1 — 2.z) becomes zero. Points z such as mentioned will be called
dangerous in the sequel. Let’s forget for a moment the somewhat premature
discovery that « < 1/3 < 1/2. And let the search for dangerous points start
here from scratch:

2
r X ; X _ xr
v, . V- _ .
’ (1—2.x> Vol = T =g

tr=vVe'(2z-1) = zQV2+1)=Vr =

WA 1
2/ £1 241/

Hence each dangerous point will give rise to 2 other dangerous points. After 4
iterations, for example, there will be 1 + 2 + 4 + 8 4+ 16 = 31 dangerous points.
It seems useful to know how these points are distributed along the z-axis. Some
experimental results are depicted in the above figure.

It is conjectured that the whole area 1/4 < & < 400 is, in fact, more or less
dangerous, with exception perhaps of a few stationary points. But even for such
invariant points, there is always the danger of becoming less stationary, because
of roundoff errors. The latter will inevitably be present, as soon as numbers are
calculated in a real world environment.

If the above is true, then the only ”safe” domain for z while iterating with the
function y(z) would be given by 0 < z < 1/4. Better substitute the values
z = a.b and y = a’.b’. Then we find, indeed, that the denominator will never
be zero:

T

0<ab< <1—-2.ab<l1

N | =

=

FNgr.

And we know for sure that a.b will never ”escape” from the interval (0,1/4).
If a starting value of z = a.b is selected somewhere inside the interval 0 < x <
1/4, and it does not coincide with the point 1/4, then it is observed that the
successive iterates converge (rather quickly) to = 0. If we commit ourselves to
modern terminology, then we would say that the point x = 0 is an attractor of
the function y(x) = 22/(2.2—1)? over the interval 0 < x < 1/4. An enlargement
of the function in the neighbourhood of the attractor is depicted in the figure
on the next page.

28

14

O X 0.245

”Some Stable Solutions” were found in the chapter with the same name, but they
were found regardless of any considerations about a ”"safe” domain of interest.
Is it a coincidence that the safety condition a.b < 1/4 does not play any role
in this case? Is it perhaps due to the fact that the stability condition we have
adopted instead, is actually stronger than the condition for safety? Let’s see:

a+b<l = (a+b?*<1 = a*2.ab+b*<1—4.ab
— 1-4ab>(@—-0b2>0

Herewith it is demonstrated that Stability is, indeed, a sufficient condition for
Safety. But it should be emphasized, at the same time, that Stability is not
necessary for Safety: there may exist Safe Solutions which are not Stable.

The Trigonometric Connection I

A bit of elementary trigonometry is needed in order to acquire further knowl-
edge. Start with:
c05(2.¢) = 2.cos*(¢) — 1

Solve for cos(¢), divide ¢ by two and take care of the signs:

1 1 1
cos(=¢p) =1/ =+ zcos(¢p) for 0<¢p<m
2 2 2
Augmented with:
cos(m — @) = —cos(9)
But suppose we are rather interested in the function D(h) = 2 + 2.cos(w.h),
restricted to the range 0 < h < 1. Rewrite the above formula as such:

1
2+ 2.cos(7r.§h) =2+4++/2+2.cos(r.h) for 0<h<1

29

It follows that: 1
D(ih) =2+4++/D(h) for 0<h<1
Augmented with:
2+ 2.cos[m(1 —h)] =2 —2.cos(m.h) or D(1—h)=4-D(h)

The latter formula can also be implemented in a more ”symmetric” way, as

opposed to D(h/2) =24 +/D(h) :
D(l—%h):4—D(%h):2—\/D(h) for 0<h<1

Elementary values are:

Start with h = 1/2 then:

D7) =2+1/D(5)=24V3 D) =4-D(})=2-V2

Let’s try now for fractions x1/8. The values D(0/8), D(2/8), D(4/8), D(6/8)
and D(8/8) have already been calculated. Go for the rest:

é):2+\/D(i):2+\/2+\/§ D(g):z;ﬂ/p(é:zf\/wx/i
(%):H D(Z):2+\/2—\/§ D(g):él—D(g):Z—\/Z—ﬁ

The outcomes can be sorted, in descending order, or with the h-values as a key:

D(
D

D(0/8) = 4

D(1/8) = 241\/2+V2
D(2/8) = 24?2
D(3/8) = 24+1/2-V2
D(4/8) = 2

D(5/8) = 2—4/2—+2
D(6/8) = 2—-+2
D(7/8) = 2—1/2+2
D(8/8) =

30

It is evident that such a procedure will work for any denominator of the form
2N where N > 0 is an integer. The proof is by complete induction. Suppose
that the work has already been done for 2V~! then all function values for
angles m.2.k/2N are known. The values for m.k/2" can be calculated by using
D(k/2N) =24 +/D(2.k/2N), giving all values k/2" in the interval 0 < k/2V <
1/2. The remaining values, in the interval 1/2 < k/2¥ < 1, can then be
calculated by using D(1 — k/2V) = 4 — D(k/2N).

The structures of square-roots-of-two are very much alike, except for the + signs.
Hence they may be abbreviated as follows and interpreted as binary codes or
"numbers”:

2+\/2—\/2+\/2+\/2—... = +—4++—... = 01001..

Calculations for denominators of higher degree can be automated by a computer
program. By doing so, it is observed that the "new” numbers, with &k = odd,
together form a binary-reflected Gray-code. A Gray-code is characterized by
the property that only one ”bit” is changed at a time, while going to the next
codeword (provided that both codewords are of equal length). Suppose we have
a N-bit Gray code which is represented by a (N x 2V) matrix of "+’s and '—’s,
in such a way that the ¢’th column is the i’th codeword:

G(N) - [GO Gl Gz GQN_l]

The order of the codes belonging to G(N) remains unchanged while using the
formula D(h/2) = 2+ \/D(h), the order is reversed while using the formula

D(1 - h/2) = 2 — +/D(h), for obtaining the next generation of codewords.
Thus, while performing the next step of the angle-refinement procedure, the

code is augmented, for odd indices k, with '+’ and '—’ signs as follows:
_ GO G1 GQN_l GZN—I G2N_2 Gl G(]
GIN+1) = + + .. + — - . = =

If G(N) is a N-bit Gray code, then herewith it is clear that G(N + 1) must be
a (N + 1)-bit Gray code. Our proof by induction is completed by verifying the
existence of a trivial 1-bit code:

Let’s consider again now the functions which relate the the product of the off-
diagonal coefficients at the coarser grid to the product of coefficients at the finer
grid and vice versa. Start with:

o Vil 1
22 £1 241/

31

The accompanying process of grid refinement may also be described as follows:

1 /1
X xZ

Start with 2’ = 1/2 or 1/2’ = 2, the value for which the (inverse) coarsening
process explodes, then 1/2 = 24+/2. Iterating again gives: 1/z := 24+/2 £+ /2.
And so on and so forth. If these values are sorted in descending order, and
plotted on a computer screen, then the resemblance with a cosine function
readily becomes apparent. Indeed, the sequence:

2+ 2i\/2i\/2i\/2i\/f

is recognized to be quite the same one as has been produced by iterations with
the function D: start with A = 1/2 and do exactly the same with:

D(%h):2+\/D(h) or D(l—%h):2— D)

We may conclude that there exists an intimate, one-to-one relationship between
two seemingly quite different functions. The first one maps the catastrophic
value 1/2 onto points in the space of products of off-diagonal coefficients, which
may then called ”dangerous”. The second one calculates all successive values of
2 + 2.cos(k.m/2N) for all k with 0 < k < 2V and N an arbitrary large integer,
starting with the outcomes 2 + v/2. In fact, nothing prevents us from writing:

1 1 1
a,.b,ED(h) and — = D(=h)

Where a.b denotes the off-diagonal coefficients product, which is obtained by
refinement of the grid belonging to a’.b’. It is observed that grid-refinement
corresponds with halving an angle. It may be questioned if the reverse is also
true: does grid coarsening correspond with doubling an angle?

2 2
, z 1 1
= P — = 2 — —
‘ <2.x1> ! < x)

Which is equivalent with:

c05(2.¢) = 2.cos*(¢) —1 <= 2+ 2.c05(2.¢) =2+ 4.cos*(¢p) — 2 =

[2.cos(8)]” = (2— [2+ 2.cos(9)])? < D(2.h) =[2— D(h)]?

Where ¢ = m.h. Because 1/x = h and 1/2’ = 2.h, there is enough solid ground
now to identify:
1
= D(h) = 2+ 2.cos(m.h)

32

Herewith we find the distribution of dangerous points in (a.b)-space, belonging
to a grid refinement of order IV, as has been verified by numerical experiments
too:

1
b= k=0,1,2,..2Y
“ 2 + 2.cos(k.m/2N) oy

The Trigonometric Connection 11

A number of conclusions can be drawn by properly employing the formula:

1 N
a.b= 3T 2.cos (ko J2N) k=0,1.2,...,2

The function reaches a minimum 1/4 for the maximum value of the denominator,
which is 4. Because the minimum of the denominator is zero, it also reaches
to infinity, meaning that dangerous points can be found at arbitrary density,
increasing with N, and everywhere in the region 1/4 < a.b < oo . It is concluded
therefore that a region which is safe everywhere can only exist in the interval
0 < a.b <4, as we have seen (but not proved) before.

However, not all points in the region 1/4 < a.b < oo share the same amount of
risk. It seems reasonable to conjecture that points which are very close to 1/4
are less "dangerous” that others. It will be shown now that this is indeed true.
Points close to 1/4 correspond with small angles. Hence any coarsening of the
grid will correspond with the doubling of a small angle. The closer the point
is to 1/4, the smaller the angle will be. And hence it will require quite some
doubling effort, before this point comes in real danger. To be more specific.
Suppose that a.b almost equals 1/4. We want to use a Taylor expansion here.
Some hand-held calculus can be avoided by devising an input for our favourite
Computer Algebra System (MAPLE):

series(1/(2+2*cos(x)),x);
1

1 o 1 4 6
— e I, O,.
4+16l —1-961 + O(z®)

In our case, suppose that we have a point 1/4 + 0, corresponding with an angle
7.1/2N. Then:

i—kéw i —+—1—16(7r/2N)2
Solving for the angle:
/2N ~V16.6 = In(r) — N.In(2) = 0.5In(16) + 0.5 In(5) =
N =~ 0.5%log(1/5) + 2log(m)—2
If, for example, the deviation from 1/4 is one part per million = 1076, then

§ ~ 2720 — 0.52log(1/8) ~ 10. This means that a grid coarsening less than

33

10 times offers no real danger. Which in turn means that the finest mesh can
be allowed to consist of 21° ~ 1000 points, without possibly running into big
trouble.

What more can be said about the stationary points we have found in the past:

1) 3+5
b 9 2

Or, solve for the angle ¢ in:

1
T2y 2.cos(¢)

3 5\ (3 V5
(9 9)-

Solve for the cosines first:

a.b

A useful remark being;:

1 +v5 -1
cos(¢p) = 1 , 5 1

The first angle is just zero: ¢ = 0 and any doubling or halving of this angle
maps it upon itself. Hence 1/4 is a single stationary point, as we have seen.
The second angle must be 120°. A doubling of this angle gives cos(240°) = —1/2,
which is the same value as with ¢ = 120°. Hence 1 is also a single stationary
point, as we have seen.

The 3rd/4th angles are somewhat more complicated. The smallest of the two
will correspond with the plus sign. Doubling this one gives:

2
c0s(2.¢) = 2.cos*(¢p) —1 =2 (#) 1= % 1= %

Which is precisely the second one. Let’s double it again:

2
—\/5—1) I R S e, g

8 4

cos(4.¢) = 2.cos*(2.¢) —1 =2 < 1

Giving back the first of the two. We find that the angles are determined by:

cos(4.9) = cos(9p) = 4dop=k2nrt¢ =

2. 2.
qﬁzk?ﬂ < or ¢:k%> where k=1,2,4,8, ...

34

The product-function values corresponding with the denominator 5 are station-
ary with a multiplicity of two: the first point gives the second point, the second
point gives back the first point, and so on and so forth.

It is questioned now whether there exist also points which have a multiplicity
of three or higher. The answer is affirmative. Take for example an angle which
gives the same function value again, but only after three times doubling itself:

cos(8.9) = cos(¢p) =— 8p=k2nrt¢p =

2. 2.
b= kTW or ¢ = k?ﬁ where k=1,2,4,8, ...

We have found some clues for the behaviour of points in the area (a.b) > 1/4,
corresponding with angles k.2.w/D and denominators D = 2,3,4,5,7,8,9,....
A denominator like 6 can be produced by 1/3 = 2/6 and halving the latter.
The same story can be told for 10 : 1/5 = 2/10. Denominators 31 and 33 can
be produced by 25.¢ = k.2.7 + ¢, corresponding with multiplicities < 5. Then
3/33 =1/11, providing material for angles k.2.7/11.

It is thus observed that, in the ”dangerous” area, there also exist infinitely many
points which are not ”dangerous” at all, since they will always be mapped upon
each other with any further grid coarsening. But, as has been suggested earlier,
this situation is similar to unstable equilibrium in physics, like a pencil balancing
on its tip.

Fractions k/ 2N are expanded in a computer as binary numbers. For example:

0.00101001010011101010110101110110

But also numbers like 1/3 are represented, in a computer, as a finite binary
fraction:
0.01010101010101010101010101010101

Given a finite (though maybe very large) binary representation of any number
in the area 1/4 < a.b < oo, there is no sensible way to tell if this number is
predestined to be dangerous or not. This remains true, even if we ever would
have a computer at our disposal with immensely large words.

This story vaguely reminds to the (in)famous controversy between Formalists
(Hilbert) and Intuitionists (Brouwer). The formalist mathematicians would say
that any point in our product space is either dangerous or not dangerous. But
the intuitionist mathematicians would argue that the Law of the Fxcluded Mid-
dle is not universally valid. It cannot be decided whether a point is dangerous
or not. From a realistic point of view, one might find that the intuitionists
are merely right. Our conclusion would be, then, that the behaviour of the
products of real world off-diagonal coefficients (a.b) is, actually, unpredictable,
if their values are to be chosen in the domain 1/4 < (a.b) < oco.

We have also seen that there exists another, ”safe” domain, which fortunately is
quite distinct from the dangerous area, namely 0 < (a.b) < 1/4. The boundary

35

1/4 of this safe domain may even be defined with a sensible pinch of salt. And
it is expected that no weird mathematical problems will show up for this area
of interest.

The Hyperbolic Connection

A Trigonometric Connection has been found for the ”dangerous” domain in the
space of products of matrix coefficients. But, satisfactory as it is, we were rather
interested in a similar theory for the ”safe” domain 0 < a.b < 1/4. Tt is clear
that the function 1/a.b = 2 + 2.cos(w.h) cannot be used for this domain, not
because of its properties for doubling or halving the angle, but because of the
fact that its range is limited to 0 < 1/a.b < 4. For the safe domain, a range
0<ab<1/4or4<1/ab< oo wouldbe needed instead. Hence the question is:
do there exist functions which have the same properties for doubling and halving
their arguments as the trigonometric functions, but also have a quite different
range? The answer is yes. These functions do indeed exist. They are called
Hyperbolic Functions. As the name already suggests, hyperbolic functions are
associated with an (orthogonal) hyperbola, in contrast with the trigonometric
functions, which are associated with a circle.

Consider (the part on the right of) an orthogonal hyperbola, represented by:

-yt =1 or y(z)=va2—1 for z>1

An arbitrary area underneath y(z) can be calculated with help of the integral:
[7 y(t) dt. Let’s invoke a little help from MAPLE:

int{sqrt(t~2-1),t=1..x);
Then we find:

/ y(t) dt = %x\/xQ—l— %ln ($—|-\/£L‘2—].)
1

y (x.y)

p/2

O 1 x

The first term in this expression is the area of a triangle with base = and height

36

y. The expression as a whole represents the area underneath y from 1 to z.
Thus the second term in the expression represents the area which is spanned
by the x-axis, a vector from the Origin to (x,y) and the curved line between
(1,0) and (z,y). The latter area may be taken as an analogy with the area ¢/2
within a (unit-)circle sector. Hence we could make the following choice, when
defining a "hyperbolic angle” 2.p/2 instead of 2.¢/2 = ¢:

pzln(l‘—i-\/xz—l) =lIn(z+y)

Herewith we define a hyperbolic sine and a hyperbolic cosine:
sinh(p) =y cosh(p) =z
And a hyperbolic tangent, eventually:

sinh(p)

tanh(p) = cosh(p)

It is possible to find explicit expressions for the hyperbolic functions:

p=in(z+y) = x+y=c?P
2 —y=1 = (r+y)lz—y)=1 = z—y=cP

Addition and subtraction, or solving the equations for x and y gives:

+p _ omp +p 4 op
sinh(p) = —— 5 cosh(p) = erre”
2 2
And, eventually:
etP _ =P

The following formula is the hyperbolic analogy of cos®(x) + sin®(z) =1 :
cosh®(p) — sinh®(p) =1 = cosh®(p) — 1 = sinh?(p)

Especially the function cosh(p) will be of interest to us. It is immediately clear
that the range of cosh(p) is precisely the kind of completion which is needed for
the "safe” domain of interest:

1 < cosh(p) < oo while —1<cos(m.h) < +1

Where the minimum value is attained as cosh(0) = 1. It is questioned now if
formulas for doubling or halving the hyperbolic angles do indeed exist:

+2.p —2.p +p 2 —p 2 2 Tpo—p 2
cosh(2.p) = < ere _ () 4 (e)2+ e _

37

P 4 P\ 2
2 (%) —1=2.cosh?*(p) —1 =

cosh(2.p) = 2-COSh2(p) —1 and cosh(%p) — \/@

Doubling the grid-spacing corresponds with doubling the hyperbolic angle, while
halving the grid-spacing corresponds with halving the hyperbolic angle, meaning
that the hyperbolic angle must be proportional to the grid-spacing;:

p=Q.dx with Q>0

The latter condition imposes no limitation on generality, because the hyperbolic
cosine is symmetric: cosh(p) = cosh(—p). Therefore the absolute value of its
argument is all that matters. Thus @ is a positive constant which eventually
has to be determined later on. The hyperbolic cosine is ready to take over now
where the trigonometric cosine has failed. As with the trigonometric cosine, we
shall propose:

1

a.b(dx) =
(de) 2+ 2.cosh(Q.dx)

All persistent properties will remain the same, because they are only depen-
dent upon the formulas for doubling and halving. And with respect to these
formulas it makes no difference whether we use the trigonometric or hyperbolic
connection. It may be even remarked that the trigonometric and the hyperbolic
connection are transformed in each other at (1/4,1/4), by switching from an
imaginary to a real argument, or vice versa, because:

eti¢ 4 e=J-@

cosh(j.¢) = —y = cos() where j = imaginary unit

The above formula for a.b(dz) can be written in a more transparent form:

1 1
2 + 2.cosh(Q.dx) T 2712 [2.cosh?(Q/2.dx) — 1]

a.b(dx) =
Resulting in:

R -
b= cosh?(Q/2.dx) = Vab= cosh(Q/2.dx)

From the preceding paragraph, we also have:

b_ par _ \/E _ GP/2de 4 \/E _ o~P/2dz
a a b

38

It is a simple matter now to find the explicit formulas, relating each of the
off-diagonal coefficients to the distances dz in the grid:

1o+P/2.dx ot P/2.dx
b= \[Vab— 2 -

cosh(Q/2.dx) etQ/2dz 4 ¢~Q/2.dx

1,-P/2.dz o—P/2.dz
NV

cosh(Q/2.dx) etQ/2de 4 ¢~Q/2.dw

Herewith a new light is shed upon all kind of persistent properties. For example:
6+P/2.dw €7P/2.dm

a+b= etQ/2.dx + e—Q/2.dx + etQ/2.dx + e—Q/2.dx =

etP/2.dz | —P/2.dx cosh(P/2.dx)

etQ/2.dz | o—Q/2.dx cosh(Q/2.dx)

It is seen therefrom that the following relationships are true:

a+b<1l <= |P|<|Q
a+b=1 <= |P|=|Q]
a+b>1 <= |P|>|Q]

The absolute values come from: cosh(—P.dx) = cosh(P.dx) = cosh(|P|.dx).
Another interesting quantity is the so-called matriz discriminant, for which the
sign was found to be persistent. Meanwhile the sign has even become positive,
because of a.b < 1/4 and:

_ 1/4 _ cosh*(Q/2.dx) — 1
1-4ab=1- 4'cosh2(Q/2.dm) ~ cosh?(Q/2.dx)

sinh?(Q/2.dx)

Let’s try now for even more general solutions of the finite difference equation
which is accompanying the tri-diagonal system of equations:

—b.Ti,1 + Tz - a.Ti+1 =0
Solutions of the form T; = K*~! will be attempted. Substitution leads to:
K"™2[-b+K-aK? =0 or aK?’-~K+b=0

A real-valued solution exists iff the discriminant 1 — 4.a.b > 0. Since the dis-
criminant equals tanh?(Q/2.dx), there is no question about it. Substitute now
the expressions that we have found for a and b, giving:

o—P/2.dv 2 _ (€+Q/2.dac " efQ/2.dx) K 4 etP/2dz _

39

K2 _ oP/2dx (6+Q/2.dz + 67Q/2.dx) K+ ePdr —

(K B 6(P+Q)/2.alac) (K N 6(P7Q)/2.dz) —0
Resulting in:
T = AK 4 KEL with Ky = ePHQ/2dr anq |, = ((P-Q)/2dx
At last, (i — 1).dz can be simply replaced by (z), yielding the equivalent:
T(z) = \ePHQ/22 4 [(P-Q)/22

Which, at the same time, is recognized as a general Analytical Solution.

Governing equation

Imagine a grid which is extremely fine. Actually, the grid is so fine that it can
by no physical means be distinguished from a ”true” continuum. Then it may
be assumed that also the numerical solution at such a fine grid can by no means
be distinguished from the analytical one. Imagine now that we use our Newton-
Rhapson MultiGrid Solver for coarsening, step by step, this immensely fine grid.
Also suppose that, at some step, the matrix coefficients correspond with some
persistent scheme. If this is the case, only once, then the matrix-coefficients
will always be changed in such a way that the scheme persists through all of
the coarser and finer grids of the solver. However, an ”exact” solution will be
obtained by using a persistent scheme at a immensely fine grid. Coarsening
does not change the persistent scheme, nor does it change the ”exact” solution,
as it is specified at the points of the successive grids. These considerations lead
to the following Corollary:

Even if we use a persistent scheme at a very coarse grid, the solution will always
be nothing else but just a specification of the exact solution at the grid points.
To put it in a simple and straightforward way: any one-dimensional persistent
scheme will give rise to numerical solutions which are exact at the grid points.
Hence such a scheme in fact will be identical to an Exact or Analytical Scheme.
Consider again the finite difference equation which is associated with a tri-
diagonal system of equations:

—b.Ti_l + Ti - a.TH_l =0
Meanwhile, we have found explicit formulas for the coefficients ¢ and b:

e+P/2.dz €7P/2.dm

b= et Q/2dr 1 o Q/2.dx CT FQ/2dr | o QJ2.dx

Let’s proceed now with the F.D. equation, working towards a continuous version:

—etP/2dz Py _ dy) + (6+Q/2-d9” + e*Q/z'dz) T(z) — e T/%9 T(x + dz) =0

40

The exponential functions are expanded into a Taylor series, while carefully
preserving all terms of second order:

— [1 + P/2.dzx + (P/2.dx)?* /2] T(z — dx)
+ [2+ (Q/2.d2)*] T(x)
— [1— P/2.dzx + (P/2.dx)?*/2] T(z + dz) = 0
Collect terms with respect to different powers of (dx):
—T(x — dz) — 2.T(z) + T(x + dz)] + dz.P[T(z+dzx) —T(z — dx)] /2
—da® [(P/2)?/2.T(x — dz) — (Q/2)*T(z) + (P/2)*/2.T(x + dz)] =0

The next step is to divide everything by (—dz?) and to work out every term.
First (order) derivative:
T(x+dx) —T(x—dx) dT

5 dn = for dr— 0

Second (order) derivative:
[T(z +dx) — T(z)] /dx — [T(z) — T(x — dz)] /dx
dz B
dT/dT|m+%dm - dT/dT|w7%d:c dzT
dx T da?

The second order derivative is also recognized in the term with dz? which, after
division by (—dz?), has become:

for dxr— 0

[(P/2)?/2.T(z — dz) — (Q/2)*.T(z) + (P/2)*/2.T (z + dx)]
= (P/Q)% [T(2 = dz) = 2.T(z) + T(x + dz)] + [(P/2)* = (Q/2)*] T(x) =

= (P/2)

o da? [T(:E —dz) —2T(z)+ T(x + dx) (P2 — (@27 T(a)

2 dx?

Yielding a more or less continuous representation:

1 5| &*T dT 5 9
{1 + 2(P/2.dx) } ik e [(P/2)” = (Q/2)*| T(z) =0
We have deliberately left in the term (P/2.dz)?, though it will go to zero with
dr — 0. This term is commonly known as ”false diffusion” and it should be
emphasized here that such a false diffusion term is can not be neglected if one
wants to preserve all terms of a second order approximation for the governing
differential equation. (The term especially becomes important for large Péchlet

41

numbers |P|.)

It is noted that " false diffusion”, as mentioned here, should be well distinguished

from the false diffusion in the book by Patankar (1980). The term is used there

in connection with directional dependence of convection in a 2-D grid, which is

quite a different matter.

If we finally do dz — 0, then we find for the governing differential equation:
d*T ar 1, , 9
T2 de —|—4(P Q)T (x)=0

This linear ODE (Ordinary Differential Equation) can be solved by conventional

or by less conventional mathematical means. Finding the characteristic equation

belongs to the former category:

1
)\Q—P.)\+Z(P2—Q2) =0

Giving:
[)\— %(P—%Q)} {)\— %(P—Q)} 0 =

1 1
)\Zi(P—'_Q) or A=§(P—Q)
And the accompanying solution:

T(z) = N\eFTQ)/2e Ly o(P=Q)/22

Which has been found at an earlier stage.

The fact that oscillating (complex) solutions cannot be found in this manner is
quite remarkable. This is in agreement with the finding that the discriminant
of the characteristic equation is always positive. Write the differential equation

in the form: P p
T T
A—+B—+CT =0
da? + dx +

Then we find for the discriminant of the characteristic equation:

(B/24) —(C[A) = (P2~ 1(P* ~ Q%) = 1Q7

= Q/2=/(B/24)? - (C/A)
The dependence on () is also apparent in an expression that we have found for
the discriminant of the accompanying tri-diagonal matrix:

1-4ab=tanh?(Q/2.dr) = 1 4ab=tanh [\/(B/zA)2 - (C’/A).da:}
Last but not least, the factor P is found to be equal to:
P/2=-B/2.A

42

Upper and Lower case

There are two cases in which a tri-diagonal system may be reduced to a system
with only two diagonals, resulting in either an Upper two-diagonal matrix U or
a Lower two-diagonal matrix L:

-b 1 0 01 —a
-b 1 0 =L 0 1 -—a =U
-b 1 0 0 1 —a

The properties of being an Upper or a Lower matrix are Persistent Properties.
Use (a/, V') = (a?,b?)/(1 — 2.a.b) to prove:

ad=ad®> and ¥ =b=0 xor V=5 and o’ =a=0
a=Va and b=b =0 xor b=vVV and d =a=0
Here ”xor” stands for: eXclusive OR. We can also write:

a(2.dx) = a®(dz) and a(dz/2) = a*/?(dx)
b(2.dzx) =b*(dz) and b(dz/2) = bY/?(dx)

And subsequently develop another piece of theory, which will be analogous then
to the theory of the ” Quotient Function”.

It’s easy to find the Finite Difference equations which are associated with the
Lower and Upper matrix, respectively:

—b.Ti,1 + Tz =0 Xor Tz - a.Ti+1 =0
Tz‘ = b.n,l Xor Ti = CL.TH,l

But the equations can also be written as follows, assigning to ¢ an increment or
a decrement, as it is appropriate:

—bT;+T;41 =0 xor T, 1—a1;=0
Ti = 1/bTZ+1 Xor T; = l/a.Ti,1

Herewith we see that an Upper matrix can be made equivalent to a Lower
matrix, and vice versa, as follows:

b 1 0 0 1 —1/b
b 1 0 = 0 1 —1/b

—b 1 0 0 1 —1/b

43

01 —a —1/a 1 0
—1/a 1 0
0 1 =-a —1/a 1 0

o
—
I
S
If

This is quite analogous to (b/a)~! = (a/b) and traversing the grid in the reverse
direction.

A natural boundary condition for the Lower matrix is at (i = 1), because,
while going from the top to the bottom, the Lower matrix corresponds with the
following F.D. equations:

T1 == T1 ; —b.T]_ + T2 =0 § eee sy —b.Ti,]_ +Tz =0 § eee sy —b.TNfl + TN =0
The system can be solved directly, by forward substitution:
Ty =bT); T5s=bTo =0T ; ...; T, =b"" Ty ...; Ty =b"V"11y

A natural boundary condition for the Upper matrix is at (i = N), because,
while going from the bottom to the top, the Upper matrix corresponds with the
following F.D. equations:

In=Tn;In-1—alN=0; ...;T;—aXli41 =05 ...; Th —al>2=0
The system can be solved directly, by backward substitution:

Tn1=aTy, Tno=a’Tn, .., Tn_i=d"Tn, .., Th =a 1Ty
Herewith the general F.D solutions for the L/U matrices become:

T, =Ty.b 1 xor Tn_j=Tn.a'
Rewrite the Upper solution:
Tn-i=Ty.d" = Ti=Ty (v 1y=Tn.a" "
= Ti=Ty (nv—i=Tn.a" ' =Ty.a" a7 =T1.(1/a)"*
Rewrite the Lower solution:
T,=T.b""" = TIy=Tp.b""!

= Tn_i=T.b" =TV 17 = Tn.(1/b)

We conclude that there exists quite some resemblance between the Lower and
the Upper solutions:

Tn.a P =T1.(1/a)"" xor Ty.b"' =Tn.(1/b)

44

Let L denote the total length of the mesh. (Herewith we can take care of
the fact that real exponents preferably should be dimensionless.) Substituting
x = (i — 1).dz/L then leads to accompanying Analytical solutions:

T(x) =T7(0).0*t <— T(L-x)=T(L).b~*/F
T(x) =T(0).a */* <= T(L—x)=T(L).a"/t

The boundary conditions should, of course, be consistent herewith:
T(L) =T(0).b xor T(0)=T(L).a

It can be demonstrated that the Rule of Positive Coefficients must remain valid
for Upper and Lower matrices, irrespective of any laws for grid coarsening and
grid refinement. Take a closer look at the Upper solution 7; = b*~'. For negative
b, the solution 7; would change sign with every increment of i. If i — 1 was even,
hence b*~! positive, then i would be odd, hence b? negative. But then i+ 1 would
be even again and b1 positive. The solution would exhibit a strong oscillatory
behaviour. Even worse, the period of the oscillations would be proportional to
the grid-spacing. If a numerical solution is assumed to converge to a smooth
analytical solution, then such an “unstable” behaviour clearly does not lead to
the desired result. Thus unstable numerical solutions are commonly considered
as being unacceptable. We conclude that acceptable solutions are only obtained
for b > 0. Very much the same argument can be employed, in order to prove,
once more, that a > 0.

L.U. Decomposition

The product of the off-diagonal coefficients in an Upper or a Lower two-diagonal
matrix is always zero. Therefore it is always in the safe domain 0 < a.b < 1/4.
This means, that, apart from the Rule of Positive Coefficients, there isn’t any
further restriction on the magnitude of a and b. Now a Lower and an Upper
matrix can always be multiplied with each other. The result will be a tri-
diagonal matrix:

-b 14+a.b —a
-b 1+ab —a
-b 14+ab —-a

45

The reverse procedure of this is called an L.U. decomposition. It can be carried
out in a way which is uniform for all rows of the tri-diagonal matrix, provided
that the main diagonal is of the form (1 +a.b). Which means that the equations
should not be normalized. One step of the pivoting process is shown below.
Assume that row (i) has been pivoted successfully. It has resulted in a row
(0 1 —a), which is stored in the Upper matrix, and a pivot (—b), which is
stored in the Lower matrix. Then row (i + 1) will be pivoted as follows:

0 1 —a

—b—(=b1) 14ab—(-b.—a) —a
—b 1+ab —a

We see that the pivot is again (—b) and that row (i + 1) again becomes equal to
(0 1 —a). Repeating the same process for all rows will result in an Upper
and a Lower matrix, called the L.U. decomposition. The product of the Lower
and the Upper matrix is equivalent to the original.

We have seen that there exist Upper and Lower solutions:

Ty " =T1.(1/a)""' xor T1.b" ' =Tn.(1/b)

We will demonstrate now that any linear superposition of these solutions is also
a solution of the accompanying tri-diagonal system.
Substitute: 4 4
T = M\(1/a)™ + pbt
Into the F.D. equation:
—b.15_1 + (1 + a.b).T,- — a.TH_l

Giving, indeed: _ _
(14 ab) [A(1/a) "+ pb" 1]
—b[Xa.(l/a)"" + p1/bb" —a [AN1/a(1/a) 7" + pb b =
X(1/a)"t [=b.a+ (1 +a.b) —a/a] + p.b" t [=b/b+ (1 + a.b) — a.b] =0

We seek a relationship between the coefficients (a, b) in our tri-diagonal systems
and the coefficients (a, b) in the Upper and Lower matrices, which are formed
by an L.U. decomposition of the former. The situation may seem somewhat
confusing, because the Lower and Upper matrices as such are normed, while
the accompanying tri-diagonal matrix in this chapter is not. Before using re-

sults from ” The Hyperbolic Connection”, we should take appropriate measures.
Divide (a, b) by the diagonal coefficient (1 + a.b) and then equate:

b et P/2.dz
T+ ab etQ2ds 4 ¢—Q/2.dw
a e—P/Q.d.’l‘

1+ab et@Q2de 1 —Q/2da

46

The product of the off-diagonal coefficients becomes:

b b ab 1
l+abl+ab (1+ab)? (e+@/2.dw 4 efQ/Z.dm)Q

Check out safe and dangerous domains first:

a.b
(1+ a.b)?

— (ab)?—2.ab+1=(a.b—1)2>0

Proving once more that the dangerous domain doesn’t exist anymore for the
newly defined coefficients (a, b). Now manipulate the right hand side, in such a
way that it assumes the same form as the left hand side:

< = 4ab<142.ab+ (a.b)?

1
4

a.b 1 1 e@-dx

(1+a.b)2 (et@/2de 4 efQ/2.dz)2 T e Qudr (e+Qude 4 1)2 T (1 4 eQudw)?

We conclude therefrom that, for the newly defined coefficients:
a.b = @ and — =l

The latter result remains unchanged, namely.
Herewith we find new expressions for the off-diagonal coefficients in the L.U.
decomposition:

b= \/E.\/a.b _ (P/2d2,Q/2de _ (3(PQ).da
a
a= \/%.v a.b = e~ F/2dv ,Q/2.dx _ ,—3(P-Q).dz

For the Analytical Solution we find:
T(z) = \a ® + p.b® = \e? Pz 4 o3(PHQ)w

It is evident herewith that the superposition of solutions of the Upper and Lower
equations, forming the L.U. decomposition of the tri-diagonal system, is indeed
identical with the general solution of the tri-diagonal system itself, as it has
been found in " The Hyperbolic Connection”.

Last but not least, it should be questioned what the governing equations are,
corresponding with the Upper and the Lower matrices. To that end, we could
set up Taylor expansions for the coefficients ¢ and b. But this would lead to
finite difference schemes which are somewhat inconsistent with standard results
from numerical analysis. This is the reason why the F.D. equations are modified
as follows, before they serve as our starting point:

Ti_l—l/b.’I%:O Xor Ti+1—l/a.E:0

47

The coefficients 1/a and 1/b are developed into a Taylor series expansion. Only
terms up and including the first order are retained:

1/b=e (PHQude o1 %(P +Q).dx

1/a=etz(P-@do o 4 %(P —Q).dx

Substitute in the Upper and Lower F.D. schemes. Then:
Ti1—1/bT; =T;—1 — [1 — %(P + Q).dz] T,=0

Ti-Ti

— ar

1
+ §(P +Q)1T;=0 : forward scheme —

1
E+1 — 1/0Tz = Ti+1 - |:1 + E(P - Q)dT:| Tz =0

Ty —1T; 1
aan U —(P-Q)T;, =0 : backward scheme «
dx 2
Taking the limit for dx — 0 results in:
ar 1 ar 1
— ——(P T = — —=(P-Q).T =
Ir 2(+Q) 0 xor o 2(Q) 0

Let « = (P+Q)/2 and 8 = (P —Q)/2, then: P =«a+ and Q = a — §,
thus assuring that a and (8 can be arbitrary real numbers. Hence, in the limit
for (dz — 0), the backward and the forward schemes boil down to differential
equations which are both of the same type, namely:

dr

— —7.1T=0 with arbitrary v = «, 8

dx
Note. It can be conceived that the L.U. decomposition of the tri-diagonal matrix
into a Lower and an Upper matrix corresponds with a decomposition of the
accompanying differential operator into a "lower” and an ”upper” part:

d 1 d 1 d? d 1
[@‘5(134-@)} {%—g(f’—@)] :@—PE—FZ(PZ—QQ)

All Possible Cases

Having established a firm relationship between the tri-diagonal system and the
governing ordinary differential equation, we should subsequently take care of all

48

possible (special) cases. There are eight of them, which can be enumerated as
follows:

A#0,B#0,C#0 (1
A#0,B#0,C=0 (2
A#0,B=0,C#0 (3
A#0,B=0,C=0 (4
A=0,B#0,C#0 (5
A=0,B#0,C=0 (6
A=0,B=0,C#0 (7
A=0,B=0,C=0 (8

T — U M — — ~— ~—

These cases are applicable to the governing equation:

d*>T aTr
Adxz +de +CT=0
- The (1)’st case (A# 0, B # 0, C # 0) is the most general one and has been
covered in detail in ” Governing Equation”. The only requirement here is that
the discriminant (B/2.4)? — (C/A) shall not be negative.
- The (2)’'nd case (A # 0, B # 0, C = 0) corresponds with the governing
equation: , ,
a*T dr a*T dr

Adx2+de_0 — dx2+Pd:L‘_
The differential equation for Convection and Diffusion is recognized.
From (P? — Q? = C = 0) it follows that: |P| = |Q|. But then, from ”The
Hyperbolic Connection”, we know:

0

a+b=1 <= |P|=|Q|

The case (a4 b = 1) has been covered at length in ”Some Stable Solutions” and
a solution of the ODE for Convection and Diffusion has been found there also.
- The (3)’rd caseis (A# 0, B=0, C #0). The governing equation is:

d°T d°T 1

A—+0T=0 = — —-QT=0

dx? + dx? 4Q
Meaning that P = 0, hence a = b. And the discriminant is Q2 = —C/A. A safe
solution of the tri-diagonal system can only exists if the latter is a positive real
number. Again, oscillatory and vibrating solutions cannot be (safely) obtained
with a tri-diagonal system of linear equations.
- The (4)’th case is (A # 0, B =0, C =0). The governing equation is:

42T
- o
da?

49

Meaning that P = 0, hence a = b. And P? = Q2, hence Q = 0. Therefore
a.b = 1/4. This is only possible if: @« = b = 1/2. The tri-diagonal system
corresponds with the Finite Difference scheme for Pure 1-D Diffusion:
1 1
—5Tia+ 1 — 51541 =0
gt 27!

It is recognized that this is equivalent with one of the special cases, as noted in
”Persistent Schemes”:

1
a=0b= 3 Symmetric matrix

The solution of both the governing equation and the tri-diagonal system is a
straight line between the boundaries, as has been established in the preamble
of ”Some Stable Solutions”.

- The (5)’th case is (A =0, B# 0, C #0). The governing equation is:

Bd—T +CT =0
dx

It was proved in ”L.U. Decomposition” that the governing equations of the
Upper and Lower matrices are of the same type, namely:

— —~7.T =0
dx !

Details are handled at length in the abovementioned chapter.
Here, of course: v = —C'/B.
- The (6)’th case is (A =0, B# 0, C =0). The governing equation is:

dr
= 0
dx
This case is recognized as a further specialization of (5), though it was already

mentioned as such in ”Persistent Schemes”:

a=0,b=1 Lower diagonal matrix

a=1,b=0 Upper diagonal matrix
- The (7)’th case is (A =0, B =0, C #0). The governing equation is:
T=0
Equivalent again with one of the special cases in ” Persistent Schemes”:
a=0b=0 Identity matrix
- The (8)’h case is (A =0, B =0, C = 0). The ultimate degenerate case.

There is no governing equation and no tri-diagonal system of equations at all.

50

The Main Result

Consider a one-dimensional uniform mesh with grid-spacing dz. Neighbouring
grid-points in the mesh are coupled by coefficients a in forward direction and
by coefficients b in backward direction. Setting up linear equations for such a
grid gives rise to a tri-diagonal matrix, which can be (re-)normalized to obtain
1’s on the main diagonal:

The system of equations can be solved by employing a Newton-Rhapson Multi-
Grid method. By employing the requirement that Properties of the tri-diagonal
system should be Persistent on any coarsened or refined grid, we find that the
Rule of Positive Coefficients is universally valid. And the discriminant of the
equations system must be positive:

a>0 and b>0 and 1—4.¢.06>0

In the limiting case of a immensely fine grid, the system of equations becomes
associated with a linear ODE of second order, called the Governing Equation:
d*T dT

+B—+CT=0

AL
da? dx

Where x = coordinate, A, B, C' = constants and T'(x) = solution.
It is conjectured that the discriminant of the characteristic equation of the ODE
must be positive (or zero). Having investigated all special cases, this turns out
to be the only condition:

B*—4.A.C >0

Hence, oscillatory solutions can never be described by the governing ODE of a
persistent tri-diagonal system of equations.

The coefficients @ and b can be expressed in the coefficients A, B,C of the
governing ODE and the grid-spacing dx. The solution of the tri-diagonal system
is nothing else but a sampling on the grid of the Analytical Solution belonging
to the governing ODE.

P.P. Summary

The coefficients of a tri-diagonal matrix, when associated with a 1-D uniform
mesh, exhibit Persistent Properties. By definition, such P.P. are independent of
the grid-spacing, while using a mesh refinement or coarsening procedure.

A (non exhaustive and sometimes redundant) list of Persistent Properties has

o1

been produced below. If appropriate, the coefficients associated with the coarser
grid are indicated with a prime accent ’.

b=20

a>0
b>0

a=0 and b=0
a=1/2 and b=1/2

a=0 and b=1

a=1 and b=0

ad+b<at+b<l (*)
ad+b=a+b=1 (%)
a+b>a+b>1 ()

a<b or d/V <alb<1
a=b or d/V=a/b=1
a>b or d/b>a/b>1

ab =ab=0
1—4.ab>0 or db<ab<1/4
1-4ab=0 or db =ab=1/4
1—4.ab<0 or db >ab>1/4

adb=ab=1
_ 3, A5 3 _ A5
a/.b/—§+7 <~ a.b—i—T
a’.b’:%—é — a.b:%—{—é

Note (*). We didn’t actually carry out a complete proof for these statements.

Here comes:
a® + b 2 2

a'—|—b':m<a—|—b — a“+b—(a+b)(l—2.ab)<0 =
— 2.a.

a®+ 0% +2.a°b+2ab’—a—-b<0 <= (a+b—1)(a+b+2.ab)<0

92

~— a+b<l1 because a4+ b+ 2.a.b >0

Then replace < by = and > and repeat the sequence of arguments.

Reference

S.V. Patankar, ”Numerical Heat Transfer and Fluid Flow”,
Hemisphere PublishingCompany U.S.A. 1980.

93

APPENDIX 1

Incremental Jacobi method

A well known iterative method for solving linear equations is easily derived by
examining each of the n equations in the linear system A.w = b in isolation. If

in the 7’th equation
n
Z Q5. W5 = bl
Jj=1

we solve for the value of w;, while assuming the other entries of w remain fixed,

we obtain:
w; = (bl — Z aiyj.wj)/aiyi
i
This suggests an iterative method defined by:

’U)Z(k) = bi — Zahj/ai’i.wj(-kA)
J#i

Equivalently be written as:
n
k k— k—
wi® = w1 — Zai,j/ai,z’-wj(' Y
j=1

which is the Jacobi method. It will be assumed in the sequel that the equations
system A is always normed, which means (in Pascal):

for i := 1 to N do
d := 1/ali,i]l;

for j := 1 to N do
ali,jl := ali,j]l * d;

A necessary condition being that the main diagonal of A is always non-zero.
The main diagonal of the normed equations, hence, will be unity everywhere.
The pseudo-code of the Jacobi method is then given by:

Initialize:
w :=0

Iterations:
w:=w+ (b- Aw

Alternatively, an iterative method for solving the equations system A.w = b
may be devised by considering the fact that A can be written as I — M and
therefore we can probably use the sum of the Geometric Series:

1

=T+ M+ M?>+M>+ M+ M°+ ..
] + M+ M?*+ M+ M* + M +

Al=

o4

Herewith it is assumed that the matrices M"™ tend to become zero for large
values of n. If such is the case, then the solution w can be computed by:

I

_ A1y
w=A 'b_IfM

b=I+M+M+M+M+M +..)b

The (pseudo)code of the above method, substituting M = (I — A), is given by:

Initialize:
r :=b
W i=T
Iterations:
r :=r - A.r
Wi=w+r

The difference with the standard Jacobi method is that iterations are performed
now upon the residual r instead of the unknown solution w. Indeed r is the
solution of A.r = b for b = 0, hence the iterations are according to standard
Jacobi on r. Next, the solution is incremented with the new residual found, and
the whole is assumed to converge. Hence it’s quite sensible to refer to such an
iterative process as an incremental Jacobi method.

Let’s formulate the requirement that M" tends to become zero more precisely
now. Any matrix M can be written as:

A1
A2
M =U"YAU where A= A3
An
It follows that:

ME = (UL AU LAU)ULAD).(UTLAU) = U AR

g 1

Ak = PV

Where:

If the absolute values of all eigenvalues are smaller than 1, then:

limp oo\ = 0

Then the transformation matrix U ant its inverse are multiplied by the zero
matrix. Consequently also the result M* must be zero. It thus seems that a

95

necessary and sufficient condition for the iteration process to converge is that
the absolute values of all eigenvalues of the matrix M be smaller than 1.

Convergence of the method can be judged further by Gersgorin’s Circle The-
orem, which states the following. Define the radius R; of the matrix-row (i)

by:
Ri=>|mil
J#i
Then each (complex) Eigenvalue X of the matrix M is in at least one of the
following disks in the complex plane:

Now the diagonal elements of the iteration matrix M are all equal to zero,
because we assumed the matrix A to be normalized and M = I— A by definition.
Furthermore, we find that all off-diagonal elements of M are equal to a; j/a; ;.
This means that a sufficient condition for all eigenvalues of the iteration matrix

be less than 1 is:
MN<Ylaigl/lad <1 = o > Jail
i 7

Meaning that the original matrix A should better be diagonally dominant.
With the incremental Jacobi method in mind, several variations on the theme
can be easily thought of, such as an incremental Gauss-Seidel and an incremental
Successive OverRelaxation (SOR) Method. Or an incremental Jacobi method
with Preconditioning. The latter two actually have been implemented by the
author, for a 3-D problem which is related to the Solar Wind. See:

http://huizen.dto.tudelft.nl/deBruijn/programs/zonwind.htm

56

APPENDIX II

program MultiGrid;

{
The End of MultiGrid

but only for 1-D ...

Let the system of equations be given by S.w =b .

Iterate: M :=I-T.S ;b :=((I+M.b ;S :=1-M2.

The background of this being (I - M)"(-1) = (I + M)/(I - M"2).
The matrix T is a preconditioner, producing normed equations.
For tri-diagonal 1-D systems, the matrix (I - M"2) recursively
reduces to blocks around the main diagonal. It finally becomes
a diagonal matrix which is normed, giving the Exact solution.

CopyLefted by: Han de Bruijn (HdB)
}
const

NN = 11 ; { Number of unknowns }

var
e : array[1..2,1..2] of double;
s,t : array[l..NN,0..2] of double;
b,p : array[1..NN] of double;
nr,no : array[l..NN] of byte;
effe : text; { LOG file }
L : byte ; getal : double ;

procedure Element(eps : double);

{
Define Finite Element matrix
______ —_— —_———— }
var
a,b : double;

begin
{
With Safety Condition:

a.b

0.5%(1 + eps)*0.5%(1 - eps)
(1 - sqr(eps))/4 < 1/4

Because: eps = getal = Random < 1
3

a :

b :

0.5%(1 - eps);
0.5%(1 + eps);

o7

e[1,1] := +a ; e[1,2]
e[2,1] := -b ; e[2,2] :=
end;

procedure Boekhouden (eerst

{

Administration

var
i : byte;

begin
if eerst then
for i := 1 to NN do
nr[i] := i;
{ Inverse: }
for i := 1 to NN do
no[nr[il]] := i;
end;

procedure Normeren;

{
Make diagonal = unity
}

var
i : byte;
d : double;
begin
for i := 1 to NN do
begin
d := 1/s[i,1];
s[i,0] := s[i,0] * d;
s[i,2] := s[i,2] * d;
s[i,1] := 1;
bl[i] := bl[i] * d;
end;
end;

procedure Schoonmaken;

{

+b;

: boolean);

Clear global matrix and vector

}
var
i : byte;

begin

o8

for i := 1 to NN do

begin
s[i,0] :=0 ;
s[i,1] := 0 ;
s[i,2] := 0 ;
b[i] := 0;
end;
end;

procedure A_Symmetrisch;

{
Fill global matrix & vector

}
var
n,i:j ;ll’JJ : byte;

begin
for n := 1 to NN-1 do
begin
for i := 1 to 2 do
for j :=1 to 2 do
begin
ii := n+i-1 ; jj := j-i+1 ;
s[ii,jjl := sl[ii,jjl + eli,jl;
end;
end;
b[1] := 1;

s[1,1] :=1 ; s[1,2] := 0 ;

b[NN] := 0;
s[NN,0] :=
end;

0 ; s[NN,1] :=1 ;

procedure Oplossen;

{

Decomposition of tri-diagonal System
var

k : integer;

diag, pivot : extended;
begin

for k := 1 to NN do

begin

diag := slk,1];
if diag = O then begin

99

Writeln(’Oplossen: O on diagonal at: ’,k);
Halt;

end ;

pivot := s[k+1,0]/diag ;

s[k+1,0] := pivot;

if pivot = O then Continue ;

s[k+1,1] := s[k+1,1] - pivot * s[k,2] ;

end;
end;

procedure Oprollen;

{
Solution of tri-diagonal System
______ —_ —————_ }
var
k : integer;
diag, pivot : extended;
begin
for k := 1 to NN do
begin
pivot := s[k+1,0] ;
if pivot = O then Continue ;
blk+1] := b[k+1] - pivot * b[k] ;
end;
for k := NN downto 1 do
begin
pivot := blk]l;
diag := s[k,1];
if diag = O then begin
Writeln(’Oplossen: O on diagonmal at: ’,k);
Halt;
end ;
pivot := pivot - s[k,2] #* b[k+1] ;
b[k] := pivot/diag;
end;
end;

procedure Vullen(term : double);

{

Define System of Equations

var
k : integer;

begin

60

{ Bulk Assembly: }
for k := 2 to NN-1 do
begin

s[k,1]

s[k,0]

s[k,2]
end;

{ Left boundary: }
s[1,1] := 1;
s[1,2] := 0;

b[1] := 1;

{ Right boundary: }
s[NN,1] := 1;
s[NN,0] := 0;
b[NN] := 0;

end;

1 ; blk] := 0;
- 0.5%(1 + term);
- 0.5%(1 - term);

procedure Afdrukken;
{

Print out Solution
}
var

i : byte;

begin
for i := 1 to NN do
Write(b[no[il]l:7:4);
Writeln;
end;

procedure Bekijken(onder,boven
{
Take a snapshot in the LOG
}
var
i : byte;

begin
for i := onder+l to boven do
Writeln(effe,s[1,0]:9:5,
> 2 .s[i,11:9:5,
> 0 ,8[i,2]:9:5);
for i := onder+1 to boven do
Write(effe,b[i]:9:5,’ ?);
Writeln(effe) ; Writeln(effe);
end;

¢ byte);

61

procedure Newton(onder,boven : byte);

{
Newton-Rhapson Multigrid
______ ——— -3}
var
i,ii : byte;
midden : byte;
d : double;
begin
{
Renormalization
}
for i := onder+1l to boven do
begin
d := 1/s[i,1];

s[i,0] := s[i,0] * d;
s[i,2] := s[i,2] * 4;

s[i,1] :=1;
b[i] := b[i] * d;
end;

Bekijken(onder,boven) ;

if (onder+1 = boven) then Exit; { We are done ! }
{
M:=I-S;b:=(+M *b

for i := onder+l to boven do
begin

plil := b[i] - s[i,0]#b[i-1] - s[i,2]*b[i+1];
end;

b := p;
{

(I+M.(T-M =1I-M2->main diagonal
iy
for i := onder+1l to boven do

s[i,1] := 1 - s[i,0]*s[i-1,2] - s[i,2]*s[i+1,0];
{

(I +M.(I-M =1I-M2->o0ff diagonal terms
¥

{ Two cases: # unknowns even or odd }
if ((boven - onder) mod 2) = O then

midden := onder + ((boven - onder) div 2);
if ((boven - onder) mod 2) = 1 then
midden := onder + ((boven - onder + 1) div 2);

62

{ Block out 0dd indices: }

for i := onder+1l to midden do
begin
ii := onder + 2*(i-onder) - 1;
t[i,1] := s[ii,1];
t[i,0] := - s[ii,0]*s[ii-1,0];
t[i,2] := - s[ii,2]*s[ii+1,2];
plil := bl[iil;
nol[i] := nr[iil;
end;

t[onder+1,0] := 0;
t[midden,2] := 0;

{ Block out Even indices: }

for i := midden+1 to boven do
begin
ii := onder + 2*(i-midden);
t[i,1] := s[ii,1];
t[i,0] := - s[ii,0]*s[ii-1,0];
t[i,2] := - s[ii,2]#*s[ii+1,2];
plil := bl[iil;
no[i] := nr[ii];
end;

t[midden+1,0] := 0;
t[boven,2] := 0;

{ Recursively: }
s :=t ; b:=p;
nr := no ;
Newton(onder ,midden) ;
Newton(midden,boven) ;
end;

procedure FDM(eps : double);
{
Finite Difference Method
______ —_ -3}
begin
{ Conventional }
Boekhouden (true) ;
Vullen(eps);
Oplossen;
Oprollen;
Afdrukken;

{ Newton-Rhapson }
Vullen(eps);

63

Newton(0,NN) ;
Boekhouden (false) ;
Afdrukken;

end;

procedure FEM(eps : double);

{
Finite Element Method

mmmmmmeoes ¥

begin

{ Conventional }
Boekhouden (true) ;
Element (eps) ;
Schoonmaken;
A_Symmetrisch;
Oplossen;
Oprollen;
Afdrukken;

{ Newton-Rhapson }
Schoonmaken;
A_Symmetrisch;
Newton(0,NN) ;
Boekhouden(false);
Afdrukken;

end;

begin
{
The method should work for any a-symmetric,
tri-diagonal and "safe" system of equations
3
Assign(effe, ’newton.log’);
Rewrite(effe);

for L := 1 to 4 do
begin
Writeln;
getal := Random;
FDM(getal) ;
FEM(getal) ;
end;

Close(effe);
end.

64

