
Resistor Models for
Diffusion in 3-D

Introduction

Almost any Finite Element book starts with the assembly of resistor-like finite
elements, without approximations (if you consider Ohm’s law as being ”exact”).
Contained in [1] is a chapter about ”Electrical Networks”. The matrix of an
electrical resistor is derived directly, by applying the laws of Ohm and Kirchhoff,
giving: [

+1/R −1/R
−1/R +1/R

]
where R are the resistances. Defining admittances A instead of resistances R
turns out to be more convenient in this context, the relationship between the
two being simply A = 1/R. The finite element matrix of a resistor is then given
by: [

+A −A
−A +A

]
Further define the connectivity (no coordinates!) of the resistor-network, and
apply two voltages. The standard FE assembly procedure can be carried out
then in a straightforward manner.

Linear Tetrahedron

Let’s consider the simplest non-trivial finite element shape in 3-D, which is a
linear tetrahedron. Function behaviour is approximated inside such a tetrahe-
dron by a linear interpolation between the function values at the vertices, also
called nodal points. Let T be such a function, and x, y, z coordinates, then:

T = A.x+B.y + C.z +D
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Where the constants A, B, C, D are yet to be determined. Substitute x = xk ,
y = yk , z = zk with k = 0, 1, 2, 3. Start with:

T0 = A.x0 +B.y0 + C.z0 +D

Clearly, the first of these equations can already be used to eliminate the constant
D, once and forever:

T − T0 = A.(x− x0) +B.(y − y0) + C.(z − z0)

Then the constants A , B , C are determined by:

T1 − T0 = A.(x1 − x0) +B.(y1 − y0) + C.(z1 − z0)
T2 − T0 = A.(x2 − x0) +B.(y2 − y0) + C.(z2 − z0)
T3 − T0 = A.(x3 − x0) +B.(y3 − y0) + C.(z3 − z0)

Three equations with three unknowns. A solution can be found: A
B
C

 =

 x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

−1  T1 − T0

T2 − T0

T3 − T0


It is concluded that A,B,C and hence (T − T0) must be a linear expression in
the (Tk − T0):

T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)

=
[
ξ η ζ

]  T1 − T0

T2 − T0

T3 − T0


See above:

=
[
ξ η ζ

]  x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

 A
B
C


See above:

= T − T0 =
[
x− x0 y − y0 z − z0

]  A
B
C


Hence:

x− x0 = ξ.(x1 − x0) + η.(x2 − x0) + ζ.(x3 − x0)
y − y0 = ξ.(y1 − y0) + η.(y2 − y0) + ζ.(y3 − y0)
z − z0 = ξ.(z1 − z0) + η.(z2 − z0) + ζ.(z3 − z0)

But also:
T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)
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Therefore the same expression holds for the function T as well as for the coor-
dinates x, y, z. This is called an isoparametric transformation. It is remarked
without proof that the local coordinates ξ, η, ζ within a tetrahedron can be in-
terpreted as sub-volumes, spanned by the vectors ~rk − ~r0 and ~r − ~r0 where
~r = (x, y, z) and k = 1, 2, 3.
Reconsider the expression:

T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)

Partial differentiation to ξ , η , ζ gives:

∂T/∂ξ = T1 − T0 ; ∂T/∂η = T2 − T0 ; ∂T/∂ζ = T3 − T0

Therefore:
T = T (0) + ξ

∂T

∂ξ
+ η

∂T

∂η
+ ζ

∂T

∂ζ

This is part of a Taylor series expansion around node (0). Such Taylor se-
ries expansions are very common in Finite Difference analysis. Now rewrite as
follows:

T = (1− ξ − η − ζ).T0 + ξ.T1 + η.T2 + ζ.T3

Here the functions (1−ξ−η−ζ), ξ, η, ζ are called the shape functions of a Finite
Element. Shape functions Nk have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

N0 = 1− ξ − η − ζ ; N1 = ξ ; N2 = η ; N3 = ζ

So we have two representations, which are allmost trivially equivalent:

T = T0 + ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0) : Finite Difference
T = (1− ξ − η − ζ).T0 + ξ.T1 + η.T2 + ζ.T3 : Finite Element

What kind of terms can be discretized at the domain of a linear tetrahedron?
In the first place, the function T (x, y, z) itself, of course. But one may also try
on the first order partial derivatives ∂T/∂(x, y, z). We find:

∂T/∂x = A ; ∂T/∂y = B ; ∂T/∂z = C

Using the expressions which were found for A,B,C: ∂T/∂x
∂T/∂y
∂T/∂z

 =

 x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

−1  T1 − T0

T2 − T0

T3 − T0


It is seen from this formula that one must determine the inverse of the above
matrix first. This can be done with Cramer’s rule, as follows:
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subroutine dinv3(mat,det)
* =====
* Direct inversion of 3 x 3 matrix
* --------------------------------

real mat(3,3),sub(3,3)
*

sub(1,1)=+mat(2,2)*mat(3,3)-mat(2,3)*mat(3,2)
sub(2,1)=-mat(1,2)*mat(3,3)+mat(1,3)*mat(3,2)
sub(3,1)=+mat(1,2)*mat(2,3)-mat(1,3)*mat(2,2)

*
sub(1,2)=-mat(2,1)*mat(3,3)+mat(2,3)*mat(3,1)
sub(2,2)=+mat(1,1)*mat(3,3)-mat(1,3)*mat(3,1)
sub(3,2)=-mat(1,1)*mat(2,3)+mat(1,3)*mat(2,1)

*
sub(1,3)=+mat(2,1)*mat(3,2)-mat(2,2)*mat(3,1)
sub(2,3)=-mat(1,1)*mat(3,2)+mat(1,2)*mat(3,1)
sub(3,3)=+mat(1,1)*mat(2,2)-mat(1,2)*mat(2,1)

*
det=mat(1,1)*mat(2,2)*mat(3,3)-mat(1,1)*mat(2,3)*mat(3,2)
+ -mat(2,1)*mat(1,2)*mat(3,3)+mat(2,1)*mat(1,3)*mat(3,2)
+ +mat(3,1)*mat(1,2)*mat(2,3)-mat(3,1)*mat(1,3)*mat(2,2)

*
if(det.eq.0.) stop ’dinv3: det=0’

*
do 10 i=1,3
do 10 j=1,3

10 mat(i,j)=sub(j,i)/det
*

return
end

While carrying out this algorithm, terms can be rewritten as in:

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0) =

= x1y2 + x2y0 + x0y1 − x2y1 − x0y2 − x1y0 =

∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣
The following shorthand notation will be used for all this:

(x, y; 0, 1, 2) =

∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣
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Let’s do the real thing now. Inverting the above matrix then results in: ∂T/∂x
∂T/∂y
∂T/∂z

 =

 (y, z; 2, 3, 0) (y, z; 3, 0, 1) (y, z; 0, 1, 2)
(z, x; 2, 3, 0) (z, x; 3, 0, 1) (z, x; 0, 1, 2)
(x, y; 2, 3, 0) (x, y; 3, 0, 1) (x, y; 0, 1, 2)

 /∆
 T1 − T0

T2 − T0

T3 − T0


Here ∆ is the determinant of the original matrix as a whole. In order to find
the coefficients belonging to T0, add up the columns of the inverted matrix and
provide the sum with a minus sign:

−

 (y, z; 2, 3, 0) + (y, z; 3, 0, 1) + (y, z; 0, 1, 2)
(z, x; 2, 3, 0) + (z, x; 3, 0, 1) + (z, x; 0, 1, 2)
(x, y; 2, 3, 0) + (x, y; 3, 0, 1) + (x, y; 0, 1, 2)

T0 =

 (y, z; 1, 2, 3)
(z, x; 1, 2, 3)
(x, y; 1, 2, 3)

T0

The righthand side being the result of a little exercise in elementary algebra.
We have found a 3 × 4 Differentiation Matrix, which represents the gradient
operator ∂/∂(x, y, z) for the function values T0,1,2,3 at a linear tetrahedron: ∂/∂x

∂/∂y
∂/∂z

 =

 (y, z; 1, 2, 3) (y, z; 2, 3, 0) (y, z; 3, 0, 1) (y, z; 0, 1, 2)
(z, x; 1, 2, 3) (z, x; 2, 3, 0) (z, x; 3, 0, 1) (z, x; 0, 1, 2)
(x, y; 1, 2, 3) (x, y; 2, 3, 0) (x, y; 3, 0, 1) (x, y; 0, 1, 2)

 /∆
It is seen that each column of the differentiation matrix corresponds with a
component of the normal (cross product) belonging to the area of the triangle
opposite to the vertex where the accompanying temperature is defined, thereby
everything being divided by the volume of the tetrahedron as a whole.

This for example means that the gradient of the temperature field is de-
scribed in a sensible way as a flux through all triangle boundaries of the tetra-
hedron.

The above procedure of finding the differentiation matrix entries for T0 thus
means that the normal on triangle (1, 2, 3) is equal to minus the sum of the
normals on the other triangles. Which in turn means that the (vector) sum
of all normals is equal to zero, which indeed should be the case for any closed
(tetrahedal) surface.

Discretization for 3-D Diffusion

Consider the three-dimensional Laplace-like term, which is defined in Cartesian
coordinates by:

∂Qx
∂x

+
∂Qy
∂y

+
∂Qz
∂z

where:  Qx
Qy
Qz

 =

 ∂T/∂x
∂T/∂y
∂T/∂z


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Here T = temperature, x, y, z = coordinates. Suppose the contribution is valid
in a domain D with boundary S. According to the so called Galerkin method,
the contribution is multiplied by an arbitrary function f and then integrated
over the Domain of interest. Since the function f is completely arbitrary (well,
continuous at least), this is supposed to be equivalent to the original problem:∫∫∫

f(x, y, z)
(
∂Qx
∂x

+
∂Qy
∂y

+
∂Qz
∂z

)
dx.dy.dz

The advantage of the Galerkin formulation is that we are able now to convert
second order derivatives into first order derivatives. To see how this works, let
us recall Green’s theorem, or partial integration for triple integrals, by which
the following expression can be substituted for the Galerkin integral:∮ ∮

f.Qn dS −
∫∫∫ (

Qx
∂f

∂x
+Qy

∂f

∂y
+Qz

∂f

∂z

)
dx.dy.dz

The first of these terms incorporates boundary conditions at the surface S. The
boundary integral is zero in case the normal derivative Qn = 0. For this reason
Qn = 0 is called a natural boundary condition: it is fulfilled automatically if the
first term in the above formulation is simply discarded.

The second term is an integral for the bulk material. Substitute temperature
fluxes herein and watch out for the minus sign:

−
∫∫∫ [

∂f

∂x

∂f

∂y

∂f

∂z

] ∂T/∂x
∂T/∂y
∂T/∂z

 dx.dy.dz
Note that the second order derivatives have been removed indeed. It is possible
to handle second order problems with first order (linear) finite elements only.

If the integration domain is subdivided into finite elements E, then the above
integral is splitted up as a sum of integrals over these elements. Integration is
always carried out numerically, by using integration points [2]. A little bit of
innovation is involved in recognizing that it doesn’t make much difference if
the integration points are deliberately chosen in such a way that evaluation
is as easy as possible: we always select them at the vertices of any elements
involved. It can be shown that elements which are integrated in such a way are
in fact superpositions of linear tetrahedra. Linear tetrahedra are so to speak the
ultimate 3-D elements and there’s no need for anything else most of the time.
At such linear tetrahedra, differentiations ∂/∂(x, y, z) are given as a matrix
operation, with the Differentiation Matrices found in an earlier stage. Here is
the symbolic representation for the element-matrix contributions belonging to
the diffusion term, using differentiation matrices ∂/∂(x, y, z):

[
∂/∂x ∂/∂y ∂/∂z

]  ∂/∂x
∂/∂y
∂/∂z

∆
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Here ∆ = determinant (volume) of the tetrahedron. Using the end-result of the
preceding chapter: ∂/∂x

∂/∂y
∂/∂z

 =

 (y, z; 1, 2, 3) (y, z; 2, 3, 0) (y, z; 3, 0, 1) (y, z; 0, 1, 2)
(z, x; 1, 2, 3) (z, x; 2, 3, 0) (z, x; 3, 0, 1) (z, x; 0, 1, 2)
(x, y; 1, 2, 3) (x, y; 2, 3, 0) (x, y; 3, 0, 1) (x, y; 0, 1, 2)

 /∆
Now we are going to use the accompanying interpretation: the columns of the
differentiation matrix are components of normals ~N on triangles which are at
the boundary of each tetrahedron. Finite element matrices for diffusion can be
written down then in the following form, finally:

~N123 · ~N123
~N123 · ~N230

~N123 · ~N301
~N123 · ~N012

~N230 · ~N123
~N230 · ~N230

~N230 · ~N301
~N230 · ~N012

~N301 · ~N123
~N301 · ~N230

~N301 · ~N301
~N301 · ~N012

~N012 · ~N123
~N012 · ~N230

~N012 · ~N301
~N012 · ~N012

 /∆
Where it should be mentioned that, in addition:

~N123 + ~N230 + ~N301 + ~N012 = 0

Hence it’s easy to show that each row of the matrix sums up to zero.
If the above result is specialized for a Finite Difference mesh, then the three

normals ~N012, ~N301 and ~N230 will be orthogonal to each other. It’s a nice exercise
to show that the well known F.D. scheme for diffusion can be reconstructed in
this case.

Resistor model for 3-D diffusion

Let us devise for example a tetrahedron, built up from electrical resistors. Six
(6) of these should be associated with the six sides of the tetrahedron. Let the
vertices of the tetrahedron be numbered 0, 1, 2, 3 and the accompanying admit-
tances be named accordingly. Assemble the accompanying element-matrices:

+A01 −A01 0 0
−A01 +A01 0 0

0 0 0 0
0 0 0 0

+


+A02 0 −A02 0

0 0 0 0
−A02 0 +A02 0

0 0 0 0

+


+A03 0 0 −A03

0 0 0 0
0 0 0 0
−A03 0 0 −A03

+


0 0 0 0
0 +A12 −A12 0
0 −A12 +A12 0
0 0 0 0

+


0 0 0 0
0 +A13 0 −A13

0 0 0 0
0 −A13 0 +A13

+


0 0 0 0
0 0 0 0
0 0 +A23 −A23

0 0 −A23 +A23


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Giving:
A01 +A02 +A03 −A01 −A02 −A03

−A01 A01 +A12 +A13 −A12 −A13

−A02 −A12 A02 +A12 +A23 −A23

−A03 −A13 −A23 A03 +A13 +A23


It is trivially seen that each row of the matrix sums up to zero. Let’s compare
this with the finite element matrix for 3-D diffusion, as has been found in the
preceding paragraph:

~N123 · ~N123
~N123 · ~N230

~N123 · ~N301
~N123 · ~N012

~N230 · ~N123
~N230 · ~N230

~N230 · ~N301
~N230 · ~N012

~N301 · ~N123
~N301 · ~N230

~N301 · ~N301
~N301 · ~N012

~N012 · ~N123
~N012 · ~N230

~N012 · ~N301
~N012 · ~N012

 /∆
Now it is possible to identify terms in the diffusion matrix and the resistor
matrix respectively:

A01 = − ~N123 · ~N230/∆
A02 = − ~N123 · ~N301/∆
A03 = − ~N123 · ~N012/∆
A12 = − ~N230 · ~N301/∆
A13 = − ~N230 · ~N012/∆
A23 = − ~N301 · ~N012/∆

Thus we can consider the 4×4 matrix for diffusion at a tetrahedron as a superpo-
sition of one-dimensional resistor-like elements, where any resistor corresponds
with the inner product of the normals of the two triangles which are not adja-
cent to the side corresponding with the resistor (divided by the volume of the
tetrahedron).

Resistors are positive if (and only if) the corresponding inner products of
the normals are negative. This means that the accompanying boundary triangle
planes have to make sharp angles which each other.

It is seen that for a (rectangular) Finite Difference grid the normals on
the triangles (012),(230) and (301) will be perpendicular to each other and
therefore the accompanying inner products will be zero. Hence in this special
case: A12 = A13 = A23 = 0.

When assembling these element matrices into the global system, most re-
sistors have to be replaced by parallel resistors, one resistor for each side of
a tetrahedron, according to the law of superposition. Exceptions are at the
boundary.
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