Example: Line Segment 2-D

$ \def \half {\frac{1}{2}} \def \kwart {\frac{1}{4}} \def \hieruit {\quad \Longrightarrow \quad} \def \EN {\quad \mbox{and} \quad} $ The equation of a line segment between $(x_1,y_1)$ and $(x_2,y_2)$ is: $$ \left\{ \begin{array}{c} x = x_1 + \xi (x_2 - x_1) \\ y = y_1 + \xi (y_2 - y_1) \end{array} \right. \qquad \mbox{where:} \qquad 0 \le \xi \le 1 $$ It is assumed that weights are uniformly distributed across this line segment: $w(\xi) = 1$. The midpoint of the line segment is: $$ \overline{x} = \int_0^1 x \, dx = x_1 + (x_2-x_1) \int_0^1 \xi \, d\xi = x_1 + (x_2-x_1) \half = \half (x_1 + x_2) $$ Quite analogously for $\overline{y}$. Therefore: $$ \overline{x} = \half (x_1 + x_2) \EN \overline{y} = \half (y_1 + y_2) $$ The second moments of inertia are: $$ \overline{x^2} = \int_0^1 x^2 \, dx = x_1^2 + 2 x_1 (x_2-x_1) \int_0^1 \xi \, d\xi + (x_2-x_1)^2 \int_0^1 \xi^2 \, d\xi = $$ $$ x_1^2 + 2 x_1 (x_2-x_1) \half + (x_2-x_1)^2 \frac{1}{3} = x_1^2 + x_1 x_2 - x_1^2 + x_2^2/3 - 2 x_1 x_2 / 3 + x1^2/3 = $$ $$ \frac{1}{3} \left( x_1^2 + x_2^2 + x_1 x_2 \right) \hieruit $$ $$ \overline{x^2} - \overline{x}^2 = \frac{1}{3} \left( x_1^2 + x_2^2 + x_1 x_2 \right) - \kwart \left( x_1^2 + x_2^2 + 2 x_1 x_2 \right) = $$ $$ \frac{1}{12} \left( x_1^2 + x_2^2 - 2 x_1 x_2 \right) = \frac{1}{12} \left( x_1 - x_2 \right)^2 $$ Quite analogously for $\overline{y^2} - \overline{y}^2$. Therefore: $$ \sigma_{xx} = \frac{1}{12} \left( x_1 - x_2 \right)^2 \EN \sigma_{yy} = \frac{1}{12} \left( y_1 - y_2 \right)^2 $$ Cross moments of intertia are a somewhat different piece of cake. MAPLE has been employed here for the purpose of being error proof: $ \overline{x y} - \overline{x} \, \overline{y} = $
  simplify(x_1*y_1 + x_1*(y_2-y_1)/2 + y_1*(x_2-x_1)/2
   + (x_2-x_1)*(y_2-y_1)/3 - (x_2+x_1)*(y_2+y_1)/4);
Giving:
    1/12 x_1 y_1 - 1/12 x_1 y_2 - 1/12 y_1 x_2 + 1/12 x_2 y_2
$$ \hieruit \sigma_{xy} = \overline{x y} - \overline{x} \, \overline{y} = \frac{1}{12} (x_2 - x_1) (y_2 - y_1) $$