Example: Line Segment 1-D

$ \def \half {\frac{1}{2}} \def \kwart {\frac{1}{4}} \def \hieruit {\quad \Longrightarrow \quad} \def \EN {\quad \mbox{and} \quad} $ The equation of a line segment between $x_1$ and $x_2$ is: $$ x = x_1 + \xi (x_2 - x_1) \qquad \mbox{where:} \qquad 0 \le \xi \le 1 \hieruit dx = (x_2 - x_1) d\xi $$ It is assumed that weights are uniformly distributed across this line segment: $w(\xi) = 1$. The midpoint of the line segment is then: $$ \overline{x} = \frac{\int_{x_1}^{x_2} x \, dx}{\int_{x_1}^{x_2} dx} = \frac{ \int_0^1 \left[ x_1 + (x_2-x_1) \xi \right] (x_2 - x_1) d\xi} {(x_2 - x_1)} = $$ $$ x_1 + (x_2-x_1) \int_0^1 \xi \, d\xi = x_1 + (x_2-x_1) \half = \half (x_1 + x_2) $$ The second moments of inertia is: $$ \overline{x^2} = \int_0^1 x^2 \, d\xi = x_1^2 + 2 x_1 (x_2-x_1) \int_0^1 \xi \, d\xi + (x_2-x_1)^2 \int_0^1 \xi^2 \, d\xi = $$ $$ x_1^2 + 2 x_1 (x_2-x_1) \half + (x_2-x_1)^2 \frac{1}{3} = x_1^2 + x_1 x_2 - x_1^2 + x_2^2/3 - 2 x_1 x_2 / 3 + x_1^2/3 = $$ $$ \frac{1}{3} \left( x_1^2 + x_2^2 + x_1 x_2 \right) \hieruit $$ $$ \overline{x^2} - \overline{x}^2 = \frac{1}{3} \left( x_1^2 + x_2^2 + x_1 x_2 \right) - \kwart \left( x_1^2 + x_2^2 + 2 x_1 x_2 \right) = $$ $$ \frac{1}{12} \left( x_1^2 + x_2^2 - 2 x_1 x_2 \right) = \frac{1}{12} \left( x_1 - x_2 \right)^2 $$ Summarizing: $$ \mu_x = \half (x_1 + x_2) \EN \sigma_{xx} = \frac{1}{12} \left( x_2 - x_1 \right)^2 $$