Example: Quarter of a Circle

$ \def \half {\frac{1}{2}} \def \kwart {\frac{1}{4}} \def \hieruit {\quad \Longrightarrow \quad} \def \EN {\quad \mbox{and} \quad} \def \spekhaken {\iint} $ As an example, consider the area which is delimited by: $$ x^2 + y^2 \le R^2 \EN x \ge 0 \EN y \ge 0 $$ The area of this quarter of a circle is simply given by: $$ A = \kwart \pi R^2 $$ The first order moments are calculated as follows: $$ \overline{x} = \frac{ \spekhaken x \, dx dy }{ \spekhaken dx dy } = \frac{ \int_0^R \int_0^{\pi/2} r.cos(\phi) \, r.dr.d\phi}{ \pi.R^2/4 } = \frac{4}{\pi R^2} \int_0^R r^2\,dr \int_0^{\pi/2} cos(\phi) \, d\phi $$ $$ = \frac{4}{\pi R^2} \left[ \frac{1}{3} r^3 \right]_0^R \left[ \, sin(\phi) \, \right]_0^{\pi/2} = \frac{4 R}{3 \pi} \approx 0.42441 \, R $$ Likewise: $$ \overline{y} = \frac{ \spekhaken y \, dx dy }{ \spekhaken dx dy } = \frac{4}{\pi R^2} \left[ \frac{1}{3} r^3 \right]_0^R \left[ \, - cos(\phi) \, \right]_0^{\pi/2} = \frac{4 R}{3 \pi} $$ The second order moments are calculated as follows: $$ \overline{x^2} = \frac{ \spekhaken x^2 \, dx dy }{ \spekhaken dx dy } = \frac{ \int_0^R \int_0^{\pi/2} \left[r.cos(\phi)\right]^2 r.dr.d\phi}{ \pi.R^2/4 } = \frac{4}{\pi R^2} \int_0^R r^3\,dr \int_0^{\pi/2} cos^2(\phi) \, d\phi $$ Where: $$ cos(2\phi) = 2.cos^2(\phi) - 1 \hieruit cos^2(\phi) = \frac{cos(2\phi)+1}{2} \hieruit $$ $$ \int_0^{\pi/2} cos^2(\phi) \, d\phi = \kwart \int_0^{\pi/2} cos(2\phi)\,d(2\phi) \, + \, \half \int_0^{\pi/2}d\phi = \kwart \left[ \, sin(\theta) \, \right]_0^{\pi} + \half (\pi/2) $$ $$ \hieruit \overline{x^2} = \frac{4}{\pi R^2} \left[ \frac{r^4}{4} \right]_0^R . \, \frac{\pi}{4} = \frac{R^2}{4} $$ In very much the same way we would find: $$ \overline{y^2} = \frac{R^2}{4} $$ This result can also be predicted, however, by considerations of symmetry. The whole figure is symmetric around the line $y = x$, namely, and so any result for $x$ can also be used for $y$ . The cross moment of inertia is: $$ \overline{xy} = \frac{4}{\pi R^2} \int_0^R r^2.r.dr \int_0^{\pi/2} cos(\phi) sin(\phi) \, d\phi = \frac{4}{\pi R^2} \left[ \frac{r^4}{4} \right]_0^R \half \left[ sin^2(\phi) \right]_0^{\pi/2} $$ We find that it has only part of the magnitude of the two other second order moments: $$ \overline{xy} = \frac{R^2}{2 \pi} < \frac{R^2}{4} $$ However, all second order moments must be calculated with respect to the center of mass: $$ \overline{x^2} - \overline{x}^2 = \overline{y^2} - \overline{y}^2 = \frac{R^2}{4} - \left(\frac{4 R}{3 \pi}\right)^2 \EN \overline{xy} - \overline{x}\overline{y} = \frac{R^2}{2 \pi} - \left(\frac{4 R}{3 \pi}\right)^2 $$ Recall the formulas: $$ \sigma'_{xx} = cos^2(\theta) \sigma_{xx} + sin^2(\theta) \sigma_{yy} + 2 sin(\theta) cos(\theta) \sigma_{xy} $$ $$ \sigma'_{yy} = sin^2(\theta) \sigma_{xx} + cos^2(\theta) \sigma_{yy} - 2 sin(\theta) cos(\theta) \sigma_{xy} $$ In our case, we have typically the situation where the angle of rotation must be $45^o$ ($\theta = \pi/4$), in order to arrive at the main moments of inertia: $$ \sigma'_{xx} = \half \sigma_{xx} + \half \sigma_{yy} + 2 \half \sigma_{xy} $$ $$ \sigma'_{yy} = \half \sigma_{xx} + \half \sigma_{yy} - 2 \half \sigma_{xy} $$ Substitute the above values: $$ \sigma'_{xx} = \frac{R^2}{4} - \left(\frac{4 R}{3 \pi}\right)^2 + \left[ \frac{R^2}{2 \pi} - \left(\frac{4 R}{3 \pi}\right)^2 \right] \approx 0.04890 \, R^2 $$ $$ \sigma'_{yy} = \frac{R^2}{4} - \left(\frac{4 R}{3 \pi}\right)^2 - \left[ \frac{R^2}{2 \pi} - \left(\frac{4 R}{3 \pi}\right)^2 \right] \approx 0.09085 \, R^2 $$