Least Squares Lemma

Before proceeding, another sequence of formulas is presented: $$ w_1 (x-A)^2 + w_2 (x-B)^2 = w_1 x^2 - 2 w_1 A x + w_1 A^2 + w_2 x^2 - 2 w_2 B x + w_2 B^2 = $$ $$ (w_1 +w _2) \left[ x^2 - 2 \frac{w_1 A + w_2 B}{w_1 + w_2} x + \left( \frac{w_1 A + w_2 B}{w_1 + w_2} \right)^2 \right] $$ $$ - \frac{(w_1 A + w_2 B)^2}{w_1 + w_2} + \frac{(w_1 A^2 + w_2 B^2)(w_1 + w_2)}{w_1 + w_2} = $$ $$ (w_1 + w_2)\left[x - \frac{w_1 A + w_2 B}{w_1 + w_2}\right]^2 $$ $$ - \frac{w_1^2 A^2 + 2 w_1 w_2 A B + w_2^2 B^2}{w_1 + w_2} + \frac{w_1^2 A^2 + w_1 w_2 A^2 + w_2^2 B^2 + w_1 w_2 B^2}{w_1 + w_2} = $$ $$ (w_1 + w_2)\left[x - \frac{w_1 A + w_2 B}{w_1 + w_2}\right]^2 + \frac{w_1 w_2}{w_1 + w_2} (A^2 - 2 A B + B^2) $$ The result is a Lemma: $$ w_1 (x-A)^2 + w_2 (x-B)^2 = (w_1 + w_2)\left[x - \frac{w_1 A + w_2 B}{w_1 + w_2}\right]^2 + \frac{w_1 w_2}{w_1 + w_2} (A - B)^2 $$