Can every continuous function be continuously "transformed" into a differentiable function?

Maybe not exactly of the form that the OP has in mind, but working. Define $g(f,x)$ by: $$ g(f,x) = \int_{-\infty}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(x-t)^2/\sigma^2}\,f(t)\;dt $$ Then we get the one-dimensional equivalent of Gaussian blur, which causes $g(f,x)$ to be differentiable to $x$. For example: $$ \frac{dg(f,x)}{dx} = \int_{-\infty}^{+\infty}-\frac{1}{\sigma\sqrt{2\pi}}\frac{x-t}{\sigma^2}e^{-\frac12(x-t)^2/\sigma^2}\,f(t)\;dt \\ \frac{d^2g(f,x)}{dx^2} = \int_{-\infty}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}\left[-\frac{1}{\sigma^2}+\frac{(x-t)^2}{\sigma^4}\right]e^{-\frac12(x-t)^2/\sigma^2}\,f(t)\;dt $$ It also works for the Weierstrass function: see Can monsters of real analysis be tamed in this way?.

EDIT. For differentiable functions $f$, partial integration shows consistency: $$ g(f',x) = \int_{-\infty}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(x-t)^2/\sigma^2}\,\frac{df}{dt}\;dt = \\ \left[\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(x-t)^2/\sigma^2}\,f(t)\right]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty}f(t)\;d\left[\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(x-t)^2/\sigma^2}\right] = \\ \int_{-\infty}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}\frac{x-t}{\sigma^2}e^{-\frac12(x-t)^2/\sigma^2}\,f(t)\;dt = \frac{dg(f,x)}{dx} $$ Note that there are some technicalities involved with $f(t\to\pm\infty)$.

The effects of Gaussian blur may be visualized as follows.

From the left to the right: parabola, the kink function $f(x)=|x|$, Heaviside function, Dirac delta.

Fuzzy Kinks

Imagine two arbitrary straight half-lines, which intersect each other at the origin: $$ \left[ \begin{array}{c} x_1(t) \\ y_1(t) \end{array} \right] = - t \left[ \begin{array}{c} \cos(\alpha) \\ \sin(\alpha) \end{array} \right] \qquad \mbox{for} \quad -\infty \lt t \le 0 $$ $$ \left[ \begin{array}{c} x_2(t) \\ y_2(t) \end{array} \right] = + t \left[ \begin{array}{c} \cos(\beta) \\ \sin(\beta) \end{array} \right] \qquad \mbox{for} \quad 0 \le t \lt +\infty $$ The union of these two half-lines is a line-with-a-kink, which is to be studied further: $$ \left[ \begin{array}{c} x(t) \\ y(t) \end{array} \right] = \left[ \begin{array}{c} x_1(t) \\ y_1(t) \end{array} \right] \cup \left[ \begin{array}{c} x_2(t) \\ y_2(t) \end{array} \right] $$ We are curious about the fuzzyfication of the kink (at the origin), which is defined as follows: $$ \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} \; e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \left[ \begin{array}{c} x(\tau) \\ y(\tau) \end{array} \right] \; d\tau \qquad \mbox{for} \quad t = 0 $$ Due to the above, this integral is equal to the sum of two parts: $$ \frac{1}{\sigma \sqrt{2\pi}} \; \int_{-\infty}^0 e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \; (- \tau) \; d\tau \cdot \left[ \begin{array}{c} \cos(\alpha) \\ \sin(\alpha) \end{array} \right] $$ $$ \; + \; \frac{1}{\sigma \sqrt{2\pi}} \; \int_0^{+\infty} e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \; (+ \tau) \; d\tau \cdot \left[ \begin{array}{c} \cos(\beta) \\ \sin(\beta) \end{array} \right] $$ Working out: $$ \frac{1}{\sigma \sqrt{2\pi}} \; \int_{-\infty}^0 e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \; (-\tau) \; d\tau = $$ $$ \frac{1}{\sigma \sqrt{2\pi}} \; \int_{-\infty}^0 e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \; \frac{t-\tau}{\sigma^2} \; d\tau \; . \; \sigma^2 \quad - \quad \frac{t}{\sigma\sqrt{2\pi}} \int_{-\infty}^0 e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} d\tau $$ Substitute $u = - \frac{1}{2} (t-\tau)^2/\sigma^2$ into the first integral and $v = (\tau-t)/\sigma$ into the second one, then $du = (t-\tau)/\sigma^2 d\tau$ and $u(0) = - \frac{1}{2} t^2/\sigma^2$ , $v(0) = - t/\sigma$ , giving: $$ = \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{-\frac{1}{2} t^2/\sigma^2} e^u \; d u \; . \; \sigma^2 \quad - \quad t \cdot \int_{-\infty}^{-t/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} v^2} d v = $$ $$ \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2} t^2/\sigma^2} \; - t \, \operatorname{Erf}(-t/\sigma) $$ Quite analogously: $$ \frac{1}{\sigma \sqrt{2\pi}} \; \int_0^{+\infty} e^{-\frac{1}{2} (t-\tau)^2/\sigma^2} \; (+ \tau) \; d\tau $$ $$ = - \frac{\sigma}{\sqrt{2\pi}} \int_{-\frac{1}{2} t^2/\sigma^2}^{-\infty} e^u \; d u \; . \; \sigma^2 \quad + \quad t \cdot \int_{-t/\sigma}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} v^2} d v = $$ $$ \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2} t^2/\sigma^2} \; + \; t \, \operatorname{Erf}(t/\sigma) $$ Thus the general outcome is: $$ \vec{\overline{r}}(t) = \left\{ \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2} t^2/\sigma^2} \; - \; t \, \operatorname{Erf}(-t/\sigma) \right\} \cdot \left[ \begin{array}{c} \cos(\alpha) \\ \sin(\alpha) \end{array} \right] $$ $$ + \left\{ \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2} t^2/\sigma^2} \; + \; t \, \operatorname{Erf}(t/\sigma) \right\} \cdot \left[ \begin{array}{c} \cos(\beta) \\ \sin(\beta) \end{array} \right] $$ It is seen that these expressions converge to the original straight half-lines for $ | t | \gg \sigma$ . When specializing for $t = 0$ , we find: $$ = \frac{\sigma}{\sqrt{2\pi}} \left[ \begin{array}{c} \cos(\alpha) + \cos(\beta) \\ \sin(\alpha) + \sin(\beta) \end{array} \right] $$ This expression can be simplified further by using a few goniometric formulas, or even better by sketching an appropriate figure and using some elementary geometry. $$ \cos(\alpha) + \cos(\beta) = 2.\cos\left(\frac{\alpha+\beta}{2}\right).\cos\left(\frac{\alpha-\beta}{2}\right) $$ $$ \sin(\alpha) + \sin(\beta) = 2.\sin\left(\frac{\alpha+\beta}{2}\right).\cos\left(\frac{\alpha-\beta}{2}\right) $$ Giving for the fuzzyfied kink: $$ \frac{\sigma}{\sqrt{2\pi}}\,.\,2\,.\,\cos\left(\frac{\alpha-\beta}{2}\right) \left[ \begin{array}{c} \cos\left(\frac{\alpha+\beta}{2}\right) \\ \sin\left(\frac{\alpha+\beta}{2}\right) \end{array} \right] $$ This is a vector dividing the angle between the lines in two equal halves. And its length is given by the astonishing simple formula: $$ 2\,.\,\cos(\phi/2) \frac{\sigma}{\sqrt{2\pi}} $$ Where $\phi$ is the angle between the two half-lines.