Conjecture with a three-diagonal system of equations

Consider a piece of an (infinitely) large system of uniform tri-diagonal linear equations: \begin{eqnarray*} - a.T_0 + T_1 - b.T_2 = 0 &\quad (1)& \\ - a.T_1 + T_2 - b.T_3 = 0 &\quad (2)& \\ - a.T_2 + T_3 - b.T_4 = 0 &\quad (3)& \\ - a.T_3 + T_4 - b.T_5 = 0 &\quad (4)& \\ - a.T_4 + T_5 - b.T_6 = 0 &\quad (5)& \end{eqnarray*} And a boundary condition ($RHS\ne0$) somewhere, but not within our reach.
It is possiblle to use equations (2) and (4) for eliminating $T_2$ and $T_4$ from (3) and replace them by $T_1$ and $T_5$. As follows: \begin{eqnarray*} T_2 = a.T_1 + b.T_3 &\quad (2)& \\ T_4 = a.T_3 + b.T_5 &\quad (4)& \end{eqnarray*} Giving respectively: \begin{eqnarray*} - a (a.T_1 + b.T_3) + T_3 - b (a.T_3 + b.T_5) = 0 & \quad \Longrightarrow \quad & \\ - a^2.T_1 + (1 - 2.a.b) T_3 - b^2.T_5 = 0 & \quad \Longrightarrow \quad & \\ - \left(\frac{a^2}{1-2ab}\right)T_1 + T_3 - \left(\frac{b^2}{1-2ab}\right)T_5 = 0 &\quad (3,2,4)& \end{eqnarray*} Thus, by employing this elimination procedure, the matrix pattern: $$ -a \qquad 1 \qquad -b $$ has been replaced by: $$ - \left(\frac{a^2}{1-2ab}\right) \qquad 0 \qquad 1 \qquad 0 \qquad - \left(\frac{b^2}{1-2ab}\right) $$ But we will go even further and eliminate the variables $T_1$ and $T_5$ from equation (3) by employing (1) and (6) together with (2) and (4): \begin{eqnarray*} T_1 = a.T_0 + b.T_2 = a.T_0 + b.(a.T_1 + b.T_3) & \quad (1,2)& \\ (1 - a.b).T_1 = a.T_0 + b^2.T_3 & \quad \Longrightarrow \quad & \\ T_1 = \left(\frac{a}{1-ab}\right) T_0 + \left(\frac{b^2}{1-ab}\right) T_3 && \end{eqnarray*} \begin{eqnarray*} T_5 = a.T_4 + b.T_6 = a.(a.T_3 + b.T_5) + b.T_6 & \quad (4,5)& \\ (1 - a.b).T_5 = a^2.T_3 + b.T_6 & \quad \Longrightarrow \quad & \\ T_5 = \left(\frac{a^2}{1-ab}\right) T_3 + \left(\frac{b}{1-ab}\right) T_6 && \end{eqnarray*} Now substitute (1,2) and (4,5) into (3,2,4), then: \begin{eqnarray*} - a^3/(1-2ab)/(1-ab) &T_0& \\ + \left[1 - 2.a^2.b^2/(1-2ab)/(1-ab)\right] &T_3& \\ - b^3/(1-2ab)/(1-ab) &T_6& = 0 \end{eqnarray*} And the matrix pattern has become: $$ - a^3.X(a,b) \qquad 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad - b^3.X(a,b) $$ Where: $$ X(a,b) = \frac{1/(1-2ab)/(1-ab)}{1 - 2.a^2.b^2/(1-2ab)/(1-ab)} = $$ $$ \frac{1}{(1-2ab)(1-ab) - 2.a^2.b^2} = \frac{1}{1-3ab} $$ Hence the matrix pattern, with five equations involved, simplified: $$ - \left( \frac{a^3}{1-3ab} \right) \qquad 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad - \left( \frac{b^3}{1-3ab} \right) $$ It is seen that the elimination procedure with 5 equations involved results in a pattern which is very much alike the one with 3 equations involved: $$ - \left(\frac{a^2}{1-2ab}\right) \qquad 0 \qquad 1 \qquad 0 \qquad - \left(\frac{b^2}{1-2ab}\right) $$ This would suggest that an elimination procedure with $2n-1$ equations involved would result in a matrix pattern like: $$ - a^n/(1-n.a.b) \quad 0 \quad ... \quad 0 \quad 1 \quad 0 \quad ... \quad 0 \quad - b^n/(1-n.a.b) $$ But this suggestion seems to be false. It is already false for $n=1$, as is clear from $-a\ne -a/(1-ab)$ and $-b\ne -b/(1-ab)$. And it is false for $n=4$, as is clear from $4=2\times 2$. Because herewith the function $X(a,b)$ becomes, for $n=4$ : $$ X(a,b) = \frac{1/(1-2ab)/(1-2ab)} {1 - 2\left[a^2/(1-2ab)\right]\left[b^2/(1-2ab)\right]} $$ $$ \frac{1}{(1-2ab)^2 - 2.a^2.b^2} = \frac{1}{1-4ab+2a^2b^2} \ne \frac{1}{1-4ab} $$ Can we conclude that the elimination of $(2n-1)$ equations from the given uniform three-diagonal linear system of equations results in a pattern $$ - a^n/(1-n.a.b) \quad 0 \quad ... \quad 0 \quad 1 \quad 0 \quad ... \quad 0 \quad - b^n/(1-n.a.b) $$ but if and only if $(n=2)$ or $(n=3)$ ?

(linear-algebra) (matrix-decomposition) (gaussian-elimination)