Calculating polar decomposition

A brute force (numerical) method for obtaining the right polar decomposition has been presented in this answer at MSE. When applied to the OP's problem (`Test4`) we get an outcome like: $$ \begin{bmatrix} 2.000000 & -3.000000 \\ 1.000000 & 6.000000 \end{bmatrix} = \\ \begin{bmatrix} 0.894427 & -0.447214 \\ 0.447214 & 0.894427 \end{bmatrix} \begin{bmatrix} 2.236068 & 0.000000 \\ 0.000000 & 6.708204 \end{bmatrix} $$ However, when searching for the number $0.447214$ on the internet, we find that it's approximately equal to What is 1 over square root of 5?. So let's do an educated guess: $$ \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3\sqrt{5} \end{bmatrix} $$ It is noticed that the above question is similar to another one. EDIT. But the above is, of course, overkill.
Here comes a much simpler solution. First form the transpose times the original matrix: $$ \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix}^T\begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 45 \end{bmatrix} $$ Then make the following Ansatz: $$ \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}^2 = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}\begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} = \begin{bmatrix} a^2 & 0 \\ 0 & c^2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 45 \end{bmatrix} $$ So the square root of a diagonal matrix is extremely simple; just take the square roots of the diagonal elements: $$ \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} = \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3\sqrt{5} \end{bmatrix} $$ At last, the orthogonal matrix is found with: $$ \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix}\begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3\sqrt{5} \end{bmatrix}^{-1} = \\ \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix}\begin{bmatrix} 1/\sqrt{5} & 0 \\ 0 & 1/(3\sqrt{5}) \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} $$ Same conclusion: $$ \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3\sqrt{5} \end{bmatrix} $$