Find the polar decomposition

A brute force (numerical) method for obtaining the right polar decomposition has been presented in this answer at MSE. When applied to the OP's problem (`Test3`) we get an outcome like this: $$ \begin{bmatrix} 1.000000 & 0.000000 \\ 1.000000 & 1.000000 \end{bmatrix} = \\ \begin{bmatrix} 0.894427 & -0.447214 \\ 0.447214 & 0.894427 \end{bmatrix} \begin{bmatrix} 1.341641 & 0.447214 \\ 0.447214 & 0.894427 \end{bmatrix} $$ However, when searching for the number $0.447214$ on the internet, we find that it's approximately equal to What is 1 over square root of 5?. So let's do an educated guess: $$ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 3/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} $$ Finding the left polar decomposition is left as an exercise to the reader.

EDIT.
However, the square root of a real-valued general symmetric positive definite $2 \times 2$ matrix can be calculated exactly: $$ \begin{bmatrix} a & b \\ b & c \end{bmatrix}^2 = \begin{bmatrix} A & B \\ B & C \end{bmatrix} \quad \Longrightarrow \\ \begin{bmatrix} a & b \\ b & c \end{bmatrix}\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} a^2+b^2 & b(a+c) \\ b(a+c) & b^2+c^2 \end{bmatrix} = \begin{bmatrix} A & B \\ B & C \end{bmatrix} $$ It follows that: $$ \begin{cases} a^2+b^2 = A \\ b(a+c) = B \\ b^2+c^2 = C \end{cases} \quad \Longrightarrow \quad \begin{cases} a^2 = A - b^2 \\ b^2(a^2+2ac+c^2) = B^2 \\ c^2 = C - b^2 \end{cases} $$ Using the determinants gives an additional equation: $$ (ac-b^2)^2 = AC-B^2 \quad \Longrightarrow \quad ac = \sqrt{AC-B^2}+b^2 $$ Making smart combinations already gives the end-result: $$ b^2(a^2+2ac+c^2) = B^2 \quad \Longrightarrow \\ b^2([A - b^2]+2[\sqrt{AC-B^2}+b^2]+[C - b^2]) = B^2 \quad \Longrightarrow \\ b^2(A+2\sqrt{AC-B^2}+C) = B^2 \quad \Longrightarrow \\ b = \frac{B}{\sqrt{A+2\sqrt{AC-B^2}+C}} $$ Together with $$ a = \sqrt{A-b^2} \quad ; \quad c = \sqrt{C-b^2} $$ So here comes a much simpler solution. First form the transpose times the original matrix: $$ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^T\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} A & B \\ B & C \end{bmatrix} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}^2 $$ With the above formulas: $$ b = \frac{B}{\sqrt{A+2\sqrt{AC-B^2}+C}} = \frac{1}{\sqrt{2 + 2\sqrt{1} + 1}} = 1/\sqrt{5} \\ a = \sqrt{A-b^2} = \sqrt{2 - 1/5} = 3/\sqrt{5} \\ c = \sqrt{C-b^2} = \sqrt{1 - 1/5} = 2/\sqrt{5} $$ So we have, indeed: $$ \sqrt{\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^T\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}} = \begin{bmatrix} 3/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} $$ At last, the orthogonal matrix is found with: $$ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ -1/\sqrt{5} & 3/\sqrt{5} \end{bmatrix} / 1 = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} $$ Which leads to the same conclusion: $$ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 3/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} $$