The wave equation as a system of first-order PDE's

Not exactly what you asked for, but maybe a sensible alternative (I hope so).
Employing Operator Calculus we indeed have sort of a splitting into first order equations: $$ u_{xx}-u_{tt} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = \left[ \left(\frac{\partial}{\partial x}\right)^2 - \left(\frac{\partial}{\partial t}\right)^2 \right] u = 0 \quad \Longleftrightarrow \\ \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) u = 0 \\ \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right) u = 0 $$ Let $u(x,t) = f(x-t)$ , then: $$ \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right) f(x-t) = \frac{\partial f}{\partial (x-t)}\frac{\partial (x-t)}{\partial x} + \frac{\partial f}{\partial (x-t)}\frac{\partial (x-t)}{\partial t} = \\ = \frac{\partial f}{\partial (x-t)}(+1) + \frac{\partial f}{\partial (x-t)}(-1) = 0 $$ Let $u(x,t) = g(x+t)$ , then: $$ \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) g(x+t) = \frac{\partial g}{\partial (x+t)}\frac{\partial (x+t)}{\partial x} - \frac{\partial g}{\partial (x+t)}\frac{\partial (x+t)}{\partial t} = \\ = \frac{\partial g}{\partial (x+t)}(+1) - \frac{\partial g}{\partial (x+t)}(+1) = 0 $$ It is concluded that the general solution is given by any linear combination of $f$ and $g$ as : $$ u(x,t) = \lambda\,f(x-t) + \mu\,g(x+t) $$ Update. Writing the wave equation as a system of first-order partial differential equations, using the above: $$ \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) u = v \quad ; \quad \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right) v = 0 \\ \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial t}\right) u = v \quad ; \quad \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right) v = 0 $$ Or: $$ \frac{\partial u}{\partial x} - \frac{\partial u}{\partial t} = v \quad ; \quad \frac{\partial v}{\partial x} + \frac{\partial v}{\partial t} = 0 \\ \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = v \quad ; \quad \frac{\partial v}{\partial x} - \frac{\partial v}{\partial t} = 0 $$