Model for spread of infection, with vaccination

Let's repeat the results so far (Eenoku & callculus): $$ N = 1000000 \quad ; \quad k = 0.08 \quad ; \quad I_0 = 3000 \quad ; \quad H = 600 \\ \frac{dI(t)}{dt}=k \left[N-I(t)\right]-H $$ Ansatz (suppose the solution has the following form): $$ I(t) = C e^{-k\, t} + D $$ Initial condition: $$ I(0) = C + D = I_0 \quad \Longrightarrow \quad C = I_0 - D \quad \Longrightarrow \\I(t) = (I_0 - D) e^{-k\, t} + D = I_0 + D\left[1 - e^{-k\, t}\right] $$ Substitute into the differential equation: $$ \frac{dI(t)}{dt}=k \left[N-I(t)\right]-H \quad \Longrightarrow \quad -k\,C e^{-k\cdot t} = k\,N - k\,C e^{-k\, t} - k\,D - H \\ \Longrightarrow \quad k\,N - k\,D - H = 0 \quad \Longrightarrow \quad D = N - H/k $$ Plugging in the numbers: $$ I(t) = 3000 + 992500 \times \left[ 1 - \exp(-0.08 \times t) \right] $$ Seems a bit of an undesirable outcome to me. Something wrong with the medication?