In which sense does Cauchy-Riemann equations link complex- and real analysis?

It will be shown that a complex function $\,f = u + i.v\,$ is complex differentiable to $\,z = x + i.y\,$ if and only if it is real differentiable at $\,z\,$ and if the partial derivatives of $\,u\,$ and $\,v\,$ to $\,x\,$ and $\,y\,$ obey the so called Cauchy-Riemann Equations: $\;\partial u /\partial x = \partial v /\partial y\;$ and $\;\partial u /\partial y = - \partial v /\partial x$ .

Two special cases

The complex derivative $f'(z)$ of a complex function $f(z)$ with $z$ complex is defined as follows (with $\Delta z$ complex as well). $$ f'(z) = \lim_{\Delta z\rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} $$ A complex function can always be written in real valued components $(x,y,u,v)$ as: $$ f(z) = u(x,y) + i.v(x,y) \qquad \mbox{where} \quad z = x + i.y $$ Complex differentiation is independent of the direction, the way $z$ approaches zero. Two special cases are distinguished: differentiation in the $x$-direction and differentiation in the $y$-direction. In the $x$-direction it is found that $\Delta z = \Delta x$ and the complex derivative is: $$ f'(z) = \lim_{\Delta x\rightarrow 0} \frac{u(x + \Delta x,y) - u(x,y) + i\left[v(x + \Delta x,y) - v(x,y)\right]} {\Delta x} = \frac{\partial u}{\partial x} + i.\frac{\partial v}{\partial x} $$ In the $y$-direction it is found that $\Delta z = i.\Delta y$ and the complex derivative is: $$ f'(z) = \lim_{\Delta y\rightarrow 0} \frac{u(x,y + \Delta y) - u(x,y) + i\left[v(x,y + \Delta y) - v(x,y)\right]} {i.\Delta y} = -i.\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} $$ Two complex numbers are equal if and only if the real and the imaginary parts are equal: $$ f'(z) = \frac{\partial u}{\partial x} + i.\frac{\partial v}{\partial x} = -i.\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \quad \Longrightarrow \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \mbox{and} \quad \frac{\partial v}{\partial x} = - \frac{\partial u}{\partial y} $$ These are the well-known Cauchy-Riemann equations. Conclusion: if a function $\,f = u + i.v\;$ is complex differentiable, then the real and imaginary parts $\,u\,$ and $\,v\,$ of $\,f\,$ satisfy the Cauchy-Riemann equations at $\,z = x + i.y$ .

Real Differentiable

The complex derivative $f'(z)$ of a complex function $f(z)$ with $z$ complex is defined as follows (with $\Delta z$ complex as well). $$ f'(z) = \lim_{\Delta z\rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} $$ Consequently: $$ f(z + \Delta z) = f(z) + f'(z) \Delta z \qquad \mbox{for} \quad z \rightarrow 0 $$ A complex function can always be written in real valued components $(x,y,u,v)$ as: $$ \begin{cases} f(z) = u(x,y) + i.v(x,y) \\ f'(z) = u'(x,y) + i.v'(x,y) \end{cases} \qquad \mbox{where} \quad z = x + i.y $$ Consequently, for $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$ : $$ u(x + \Delta x,y + \Delta y) + i . v(x + \Delta x,y + \Delta y) = u(x,y) + i . v(x,y) $$ $$ + \left[ u'(x,y) + i . v'(x,y) \right] \left[ \Delta x + i \Delta y \right] \quad \Longrightarrow \quad $$ $$ u(x + \Delta x,y + \Delta y) = u(x,y) + u'(x,y)\Delta x - v'(x,y)\Delta y $$ $$ v(x + \Delta x,y + \Delta y) = v(x,y) + v'(x,y)\Delta x + u'(x,y)\Delta y $$ Meaning that, if a function $f = u + i.v$ is complex differentiable at $ z = x + i.y$ , then its real and imaginary parts $(u,v)$ are real differentiable at ($x,y)$ . On the other hand it is known from real analysis that: $$ u(x + \Delta x,y + \Delta y) = u(x,y) + \frac{\partial u}{\partial x}\Delta x + \frac{\partial u}{\partial y}\Delta y \qquad \mbox{for} \quad (\Delta x,\Delta y) \rightarrow (0,0) $$ $$ v(x + \Delta x,y + \Delta y) = v(x,y) + \frac{\partial v}{\partial x}\Delta x + \frac{\partial v}{\partial y}\Delta y \qquad \mbox{for} \quad (\Delta x,\Delta y) \rightarrow (0,0) $$ This can only be consistent if the Cauchy-Riemann equations are indeed valid: $$ \frac{\partial u}{\partial x} = u'(x,y) = \frac{\partial v}{\partial y} \qquad ; \qquad \frac{\partial v}{\partial x} = v'(x,y) = - \frac{\partial u}{\partial y} $$ It is known from real analysis that a function $\,f(x,y)\,$ is total differentiable at $(a,b)$ , if and only if the partial derivatives $\,\partial f /\partial x\,$ and $\,\partial f /\partial y\,$ exist in a neighborhood of $(a,b)$ and both are continuous there. Thus making the picture complete.

Independent of angle

The reverse question is: if the Cauchy-Riemann equations hold for the real and imaginary parts of a complex function $\,f$ , is $\,f\,$ complex differentiable then ? Let's write the complex derivative with $\,\Delta z = r.e^{i\theta}$ . The reason is that the complex derivative must be independent of any (real) angle $\theta$ while the (real) distance $r$ from $z + \Delta z$ to $z$ approaches zero. So this is what we do: $$ f'(z) = \lim_{r\rightarrow 0} \frac{f(z + r.e^{i\theta}) - f(z)}{r.e^{i\theta}} $$ Remember that $f(z) = u(x,y) + i.v(x,y)$ where $z = x + i.y$ . Also remember the jewel formula by Euler $\;e^{i\theta} = \cos(\theta) + i.\sin(\theta)$ . Giving: $$ f'(z) = \lim_{r\rightarrow 0} \frac{u(x + r\cos(\theta),y + r\sin(\theta)) - u(x,y)} {r\cos(\theta) + i.r\sin(\theta)} $$ $$ + \; i \; \lim_{r\rightarrow 0} \frac{v(x + r\cos(\theta),y + r\sin(\theta)) - v(x,y)} {r\cos(\theta) + i.r\sin(\theta)} $$ Given the real differentiable functions $[u,v](x,y)$ , for $[\Delta x,\Delta y] \rightarrow 0$ : $$ [u,v](x+\Delta x,y+\Delta y) - [u,v](x,y) = \frac{\partial [u,v]}{\partial x}(x,y)\, \Delta x + \frac{\partial [u,v]}{\partial y}(x,y)\, \Delta y $$ With $\left[\Delta x,\Delta y\right] = \left[r\cos(\theta), r\sin(\theta)\right]$ : $$ f'(z) = \lim_{r\rightarrow 0} \frac{\partial u /\partial x.r\cos(\theta) + \partial u /\partial y.r\sin(\theta)} {r\cos(\theta) + i.r\sin(\theta)} $$ $$ + \, i \, \lim_{r\rightarrow 0} \frac{\partial v /\partial x.r\cos(\theta) + \partial v /\partial y.r\sin(\theta)} {r\cos(\theta) + i.r\sin(\theta)} $$ Taking the limit for $r\rightarrow 0$ is easy: $$ f'(z) = \frac{\partial u /\partial x.\cos(\theta) + \partial u /\partial y.\sin(\theta)} {\cos(\theta) + i\sin(\theta)} \; + \; i \; \frac{\partial v /\partial x.\cos(\theta) + \partial v /\partial y.\sin(\theta)} {\cos(\theta) + i\sin(\theta)} $$ Substitute herein the Cauchy-Riemann equations (by a copy and paste from the preceding subsection): $$ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \mbox{and} \quad \frac{\partial v}{\partial x} = - \frac{\partial u}{\partial y} $$ Just doit: $$ f'(z) = \frac{\partial u /\partial x.\cos(\theta) - \partial v /\partial x.\sin(\theta)} {\cos(\theta) + i\sin(\theta)} \; + \; i \; \frac{\partial v /\partial x.\cos(\theta) + \partial u /\partial x.\sin(\theta)} {\cos(\theta) + i\sin(\theta)} $$ $$ f'(z) = \frac{\partial u}{\partial x} \; \frac{\cos(\theta) + i\sin(\theta)} {\cos(\theta) + i\sin(\theta)} \; + i \; \frac{\partial v}{\partial x} \; \frac{\cos(\theta) + i\sin(\theta)} {\cos(\theta) + i\sin(\theta)} = \frac{\partial u}{\partial x} + i \, \frac{\partial v}{\partial x} $$ Which indeed is independent of any angle $\theta$ . Consequently, if the function $\,f = u + i.v\,$ is real differentiable at $\,z = x + i.y\,$ and if the partial derivatives of $\,u\,$ and $\,v\,$ to $\,x\,$ and $\,y\,$ obey the Cauchy-Riemann Equations, then the complex derivative of $\,f\,$ is independent of the direction in which we differentiate.