Dirac Delta Test Functions

Relevant References (MSE): All functions defined on the reals and real valued.
Example 1. $T(x) =$ square: $$ T(x) = \begin{cases} 0 & \mbox{for} & -\infty < x < -1/2 \\ 1 & \mbox{for} & -1/2 < x < +1/2 \\ 0 & \mbox{for} & +1/2 < x < + \infty\end{cases}\\ \int_{-\infty}^{+\infty} T(x) \, dx = \mbox{area of } 1\times 1 \mbox{ square} = 1 $$ Sketch:

Example 2. $T(x) =$ triangle: $$ T(x) = \begin{cases} 0 & \mbox{for} & -\infty < x < -1 \\ 1+x & \mbox{for} & -1 < x < 0 \\ 1-x & \mbox{for} & 0 < x < +1 \\ 0 & \mbox{for} & +1 < x < + \infty\end{cases}\\ \int_{-\infty}^{+\infty} T(x) \, dx = \mbox{area of triangle base } 2 \mbox{ height } 1 = 1 $$ Sketch:

Helper function (Heaviside step): $$ u(x) = \begin{cases} 0 & \mbox{for} & x < 0\\ 1 & \mbox{for} & x > 0\end{cases} $$ Example 3. $T(x) =$ exponential, two versions: $$ T_a(x) = u(x) e^{-x}\\ \int_{-\infty}^{+\infty} T_a(x) \, dx = \int_{0}^{+\infty} e^{-x} \, dx = \left[ - e^{-x} \right]_0^{\infty} = 1 $$ $$ T_b(x) = e^{-|x|}/2\\ \int_{-\infty}^{+\infty} T_b(x) \, dx = 2\int_{0}^{+\infty} T_a(x) \, dx / 2 = 1 $$ Sketch:

Example 4. $T(x) =$ Gaussian (normal distribution): $$ T(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} $$ The proof that $\int_{-\infty}^{+\infty} T(x) \, dx = 1$ is so nice that it shall be reproduced here: $$ \left(\int_{-\infty}^{+\infty} e^{-x^2/2} \, dx\right)^2 = \int_{-\infty}^{+\infty} e^{-x^2/2} \, dx \cdot \int_{-\infty}^{+\infty} e^{-y^2/2} \, dy =\\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)/2} \,dx\,dy = \int_{r=0}^\infty \int_{\phi=0}^{2\pi} e^{-r^2/2} r\,dr\,d\phi =\\ \int_0^\infty e^{-r^2/2} \,d(r^2/2)\cdot\int_0^{2\pi}\,d\phi = \left[-e^{-x}\right]_0^\infty\cdot2\pi = 2\pi \\ \Longrightarrow \quad \int_{-\infty}^{+\infty} e^{-x^2/2} \, dx = \sqrt{2\pi} \quad \mbox{Q.E.D.} $$ Sketch:

Example 5. $T(x) =$ Cauchy distribution: $$ T(x) = \frac{1/\pi}{1+x^2}\\ \int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = \left[\,\arctan(x)\,\right]_{-\infty}^{+\infty} = \pi \quad \mbox{Q.E.D.} $$ Sketch:

Example 6. $T(x) = $ infinite at $x=0$ with compact support, two versions: $$ T_a(x) = \begin{cases} 0 & \mbox{for} & -\infty < x < 0 \\ (1-x)/\sqrt{1-(1-x)^2} & \mbox{for} & 0 < x < 1 \\ 0 & \mbox{for} & 1 < x < +\infty \end{cases} $$ Heuristics. Imagine a quarter of a circle with midpoint $(+1,-1)$ and radius $=1$. The tangent at $(0,-1)$ is $+\infty$ and the tangent at $(+1,0)$ is $0$. The equation of the circle is $\,(x-1)^2+(y+1)^2=1$ . It follows that $\,y(x) = -1 \pm \sqrt{1-(1-x)^2}$ . Now take the derivative of this and obtain $T(x) = y'(x)$ for $\,0 < x < 1$ . It's easy to calculate the normed integral: $$ \int_{-\infty}^{+\infty} T_a(x) \, dx = \int_0^1 y'(x) \, dx = \left[-1 + \sqrt{1-(1-x)^2}\right]_0^1 = 1 $$ Symmetric version $\,T_b(x)=\left[T_a(x)+T_a(-x)\right]/2$ : $$ T_b(x) = \begin{cases} 0 & \mbox{for} & -\infty < x < -1 \\ (1-|x|)/\sqrt{1-(1-|x|)^2}/2 & \mbox{for} & -1 < x < +1 \\ 0 & \mbox{for} & +1 < x < +\infty \end{cases}\\ \int_{-\infty}^{+\infty} T_b(x) \, dx = 2\int_0^1 T_a(x) \, dx/2 = 1 $$ Sketch:

Example 7. $T(x) = $ finite at $x=0$ with compact support: $$ T(x) = \begin{cases} 0 & \mbox{for} & -\infty < x < -1 \\ 3/4.(1-x^2) & \mbox{for} & -1 < x < +1 \\ 0 & \mbox{for} & +1 < x < +\infty \end{cases} $$ Heuristics. Try an upside-down parabola with zeroes at $x=\pm 1$. It has the general form $\,y = a(1-x^2)$ . Then calculate the integral: $$ \int_{-\infty}^{+\infty} T(x) \, dx = \int_{-1}^{+1} a(1-x^2) \, dx =\\ a \left[x-\frac{1}{3}x^3\right]_{-1}^{+1} = 2a-\frac{2}{3}a = 1 \quad \Longrightarrow \quad a = \frac{3}{4} \quad \mbox{Q.E.D.} $$ Sketch:

Example 8. $T(x) = \operatorname{sinc}(x)$ : $$ T(x) = \frac{\sin(x)}{\pi x} $$ The rest of this section is heuristics for calculating the normed integral.
High on the wish list of people who find Laplace transforms interesting is the Laplace transform of a sine function: $$ \int_0^{\infty} e^{-s x} \sin(x) \, dx = \mbox{??} $$ We proceed by integrating by parts: $$ \int_0^\infty e^{-s x} \sin(x) \, dx = \int_0^\infty e^{-s x} d\left[ - \cos(x) \right] = $$ $$ - \left[ e^{-s x} \cos(x) \right]_0^\infty + \int_0^\infty \cos(x) \, d \left[ e^{-s x} \right] = 1 - s \int_0^\infty e^{-s x} \cos(x) \, dx $$ Feels good. Let's do it again: $$ 1 - s \int_0^\infty e^{-s x} \cos(x) \, dx = 1 - s \int_0^\infty e^{-s x} d \left[ \sin(x) \right] = $$ $$ 1 - s \left[ e^{-s x} \sin(x) \right]_0^\infty + s \, \int_0^\infty \sin(x) \, d \left[ e^{-s x} \right] = $$ $$ 1 - s^2 \, \int_0^\infty e^{-s x} \sin(x) \, d x = \int_0^\infty e^{-s x} \sin(x) \, d x \quad \Longrightarrow $$ Theorem. Laplace transform of sine: $$ \int_0^\infty e^{-s x} \sin(x) \, dx = \frac{1}{1 + s^2} $$ Theorem. Half area of $\operatorname{sinc}$ function: $$ \int_0^\infty \operatorname{sinc}(x)\,dx = \frac{\pi}{2} \quad \Longrightarrow \quad \int_{-\infty}^{+\infty} \frac{1}{\pi} \operatorname{sinc}(x)\, dx = 1 $$ Proof. $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, dx \right] \, ds = \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, ds \right] \, dx $$ Because iterated limits in the real world do always commute. Now we have a left hand side and a right hand side. The left hand side, according to the above, is equal to: $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, dx \right] \, ds = \int_0^\infty \frac{ds}{1+s^2} = \left[ \arctan(s) \right]_0^\infty = \frac{\pi}{2} $$ The right hand side, on the other hand: $$ \int_0^\infty \left[ \int_0^\infty e^{-s x} \sin(x) \, ds \right] \, dx = \int_0^\infty \sin(x) \left[ \int_0^\infty e^{-s x} \, ds \right] \, dx = $$ $$ \int_0^\infty \sin(x) \frac{1}{x} \left[ - e^{-y} \right]_0^\infty \, dx = \int_0^\infty \frac{\sin(x)}{x} \, dx $$ It finally follows that: $$ \int_{-\infty}^\infty \frac{\sin(x)}{x} \, dx = \pi \qquad \mbox{Q.E.D.} $$ Sketch:

Example 9. $T(x) = \operatorname{sinc}(x)$ squared: $$ T(x) = \frac{1}{\pi} \left[\frac{\sin(x)}{x}\right]^2 $$ Calculating the normed integral: $$ \int_0^\infty \left[\frac{\sin(x)}{x}\right]^2 dx = \int_0^\infty \sin^2(x)\, d\left(-\frac{1}{x}\right)= -\left[\frac{\sin^2(x)}{x}\right]_0^\infty + \int_0^\infty \frac{2\sin(x)\cos(x)}{x} dx = \\ \int_0^\infty \frac{\sin(2x)}{2x} d(2x) = \frac{\pi}{2} \quad \Longrightarrow \quad \int_{-\infty}^{+\infty} \frac{1}{\pi} \left[\frac{\sin(x)}{x}\right]^2 \, dx = 1 $$ Sketch:

THE END.