An example of a Continuous Transformation in two dimensions is a Rotation over an angle $\theta$:
$$
\left\{
\begin{array}{c}
x_1 = \cos(\theta) . x - \sin(\theta) . y \\
y_1 = \sin(\theta) . x + \cos(\theta) . y
\end{array}
\right.
$$
It might be asked how rotation of the coordinate system works out for a
function of these variables. With other words, how the following function would
be expanded as a Taylor series expansion around the original $f(x,y)$:
$$
f_1(x,y) = f(x_1,y_1)
= f(\,\cos(\theta).x - \sin(\theta).y\, , \,
\sin(\theta).x + \cos(\theta).y\, )
$$
Define other (polar) variables $(r,\phi)$ as:
$$
x = r.\cos(\phi) \quad \mbox{and} \quad y = r.\sin(\phi)
$$
Giving for the transformed variables:
$$
x_1 = r.\cos(\phi).\cos(\theta) - r.\sin(\phi).\sin(\theta) = r.\cos(\phi+\theta)
\\
y_1 = r.\cos(\phi).\sin(\theta) + r.\sin(\phi).\cos(\theta) = r.\sin(\phi+\theta)
$$
We see that $\phi$ is a proper canonical variable. Another function $g(\phi)$
is defined with this canonical variable as the independent one:
$$
g(\phi) = f(\,r.\cos(\phi)\, ,\,r.\sin(\phi)\,) = f(x,y)
$$
Now rotating $f(x,y)$ over an angle $\theta$ corresponds with a translation of
$g(\phi)$ over a distance $\theta$. Therefore $g(\phi+\theta)$ can be developed
into a Taylor series around the point of departure:
$$
g(\phi+\theta) = g(\phi) + \theta.\frac{dg(\phi)}{d\phi}
+ \frac{1}{2} \theta^2.\frac{d^2g}{d\phi^2} + ...
$$
Working back to the original variables $(x,y)$ with a well known chain rule for
partial derivatives:
$$
\frac{dg}{d\phi} = \frac{\partial g}{\partial x}\frac{dx}{d\phi}
+ \frac{\partial g}{\partial y}\frac{dy}{d\phi}
$$
Where:
$$
\frac{dx}{d\phi} = - r.\sin(\phi) = - y
\quad \mbox{and} \quad
\frac{dy}{d\phi} = + r.\cos(\phi) = + x
\quad \Longrightarrow
\\
\frac{dg}{d\phi} = \frac{\partial g}{\partial x}.(-y) + \frac{\partial g}{\partial y}.(+x)
\quad \Longrightarrow \quad
\frac{d}{d\phi} = x.\frac{\partial}{\partial y} - y.\frac{\partial}{\partial x}
$$
Herewith we find that $X = (x.\frac{\partial}{\partial y} - y.\frac{\partial}{\partial x})$
is the infinitesimal operator for Plane Rotations.
It is equal to differentiation with respect to the canonical variable, as expected. The end-result is:
$$
f_1(x,y) = \sum_{k=0}^{\infty} \frac{1}{k!}
\left[ \theta \left(x.\frac{\partial}{\partial y} - y.\frac{\partial}{\partial x}\right) \right]^k f(x,y)
= e^{ \theta (x\, \partial / \partial y - y\, \partial / \partial x) } f(x,y)
$$
This is true for any function $f(x,y)$. In particular, the independent
variables themselves can be conceived as such functions. Which means that:
$$
x_1 = e^{ \theta (x\, \partial / \partial y - y\, \partial / \partial x) } x \quad \mbox{and} \quad
y_1 = e^{ \theta (x\, \partial / \partial y - y\, \partial / \partial x) } y
$$
It is easily demonstrated that:
$$
(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}) x = - y
\quad \mbox{and} \quad (x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}) y = x
$$
Herewith we find:
$$
\sum_{k=0}^{\infty} \left[ \theta (x.\frac{\partial}{\partial y} - y.\frac{\partial}{\partial x}) \right]^k x = 1
- \theta.y - \frac{1}{2} \theta^2.x + \frac{1}{3!} \theta^3.y
+ \frac{1}{4!} \theta^4.x + ...
\\
= \cos(\theta).x - \sin(\theta).y = x_1
$$
Likewise we find:
$$
\sum_{k=0}^{\infty} \left[ \theta (x.\frac{\partial}{\partial y} - y.\frac{\partial}{\partial x} ) \right]^k y = 1
+ \theta.x - \frac{1}{2} \theta^2.y - \frac{1}{3!} \theta^3.x
+ \frac{1}{4!} \theta^4.y + ...
\\
= \sin(\theta).x + \cos(\theta).y = y_1
$$
Thus, indeed, the formulas for a far-form-infinitesimal rotation over an finite
angle $\theta$ can be reconstructed from the expansions.
$a)\; X = x\, \partial_x-y\, \partial_y$
Accompanying ODE system: $$ \left\{\begin{matrix}\dot{x}_1 = x_1 \\ \dot{y}_1 = -y_1\end{matrix}\right. $$ Together with the boundary conditions giving a solution as has been found in the first answer: $$ \left\{\begin{matrix} x_1 = x\,e^t \\ y_1 = y\,e^{-t} \end{matrix}\right. $$
$b)\; X = x^2\,\partial_x+xy\,\partial_y$
Accompanying ODE system: $$ \left\{\begin{matrix}\dot{x}_1 = x_1^2 \\ \dot{y}_1 = x_1 y_1\end{matrix}\right. $$ Solve the first equation and substitute the solution into the second one. Solve again and apply the boundary conditions: $$ \left\{\begin{matrix} x_1 = {\Large \frac{x}{1-t\,x}} \\ y_1 = {\Large \frac{y}{1-t\,x}} \end{matrix}\right. $$ This solution deserves some attention because it is not in the first answer.
$c)\; X = -y\, \partial_x+x\, \partial_y$
Accompanying ODE system:
$$
\left\{\begin{matrix}\dot{x}_1 = -y_1 \\ \dot{y}_1 = x_1\end{matrix}\right.
$$
Two separate equations for $x_1$ and $y_1$ can be found from this:
$$
\left\{\begin{matrix}\ddot{x}_1 + x_1 = 0 \\ \ddot{y}_1 + y_1 = 0 \end{matrix}\right. \quad \Longrightarrow \quad
\left\{\begin{matrix}x_1 = A\cos(t) + B\sin(t) \\ y_1 = C\cos(t) + D\sin(t) \end{matrix}\right.
$$
Employing the original ODE : $\;\dot{y}_1=x_1$ gives $\;-C = B\;$ and $\;D = A\;$ .
At last, apply the boundary conditions:
$$
\left\{\begin{matrix}x_1 = x\cos(t) - y \sin(t) \\ y_1 = x\sin(t) + y \cos(t)\end{matrix}\right.
$$
As has been found in the first answer too.