Find solution to system of differential equations with initial conditions

Apart from some confusing notation with indices $(1,2)$ - better replace that with e.g. $(a,b)$ - you've got everything OK. About the initial conditions: $$ \vec{x}(t) = c_1 e^t \begin{pmatrix}-1 \\ 1\end{pmatrix} + c_2 e^{-t} \begin{pmatrix}1 \\ 1\end{pmatrix} \quad \Longrightarrow \quad \vec{x}(0) = c_1 \begin{pmatrix}-1 \\ 1\end{pmatrix} + c_2 \begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}-1 & 1 \\ 1 &1 \end{pmatrix}\begin{pmatrix}c_1 \\ c_2\end{pmatrix} $$ $$ \begin{pmatrix}-1 & 1\\ 1 &1 \end{pmatrix}\begin{pmatrix}c_1 \\ c_2\end{pmatrix} = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \Longrightarrow \quad \begin{pmatrix}c_1 \\ c_2\end{pmatrix} = \begin{pmatrix}-1 & 1\\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ 1 \end{pmatrix} $$ Inverse of an almost orthogonal matrix is almost the transpose, so: $$ \begin{pmatrix}c_1 \\ c_2\end{pmatrix} = \frac{1}{2} \begin{pmatrix}-1 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \Longrightarrow \quad \begin{pmatrix}c_1 \\ c_2\end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} $$