Scalar product invariance

Let's play it according to the rules of tensor calculus. Introduce polar coordinates and calculate the local base vectors of that system: $$ \left. \begin{matrix} x = r\cos(\phi) \\ y = r\sin(\phi) \end{matrix} \right\} \quad \Longrightarrow \quad \left\{ \begin{matrix} \vec{c}_r = \left[ \begin{matrix} \partial x/\partial r\\ \partial y/\partial r\end{matrix} \right] = \left[\begin{matrix}\cos(\phi)\\ \sin(\phi)\end{matrix}\right] \\ \vec{c}_\phi = \left[ \begin{matrix} \partial x/\partial \phi\\ \partial y/\partial \phi\end{matrix} \right] = r \left[\begin{matrix}-\sin(\phi)\\ \cos(\phi)\end{matrix}\right] \end{matrix} \right. $$ Next calculate the metric tensor: $$ \left[ \begin{matrix} g_{rr} & g_{r\phi} \\ g_{\phi r} & g_{\phi\phi} \end{matrix} \right] = \left[ \begin{matrix} \left(\vec{c}_r\cdot\vec{c}_r\right) & \left(\vec{c}_r\cdot\vec{c}_\phi\right)\\ \left(\vec{c}_r\cdot\vec{c}_\phi\right) & \left(\vec{c}_\phi\cdot\vec{c}_\phi\right) \end{matrix}\right] = \left[ \begin{matrix} 1 & 0 \\ 0 & r^2 \end{matrix}\right] $$ Then all we can say is something about the infinitesimal length: $$ ds^2 = \left[ \begin{matrix} dr & d\phi \end{matrix} \right] \left[ \begin{matrix} 1 & 0 \\ 0 & r^2 \end{matrix}\right] \left[ \begin{matrix} dr \\ d\phi \end{matrix} \right] \quad \Longrightarrow \quad ds^2 = dx^2 + dy^2 = dr^2 + r^2 d\phi^2 $$ It is shown in the answer by Upax how to integrate this to obtain a finite length. Substitute $r=t\sqrt{2}$ and $\phi=\pi/4$ into: $$ s = \int_0^1 \sqrt{\left(\frac{dr}{dt}\right)^2+r^2\left(\frac{d\phi}{dt}\right)^2} dt = \int_0^1 \sqrt{\left(\sqrt{2}\right)^2+\left(t\sqrt{2}\right)^2\cdot 0}\; dt = \sqrt{2} $$