Torsion and curvature of the curve $X(t) = (at, bt^2, ct^3)$

Those calculations with space curves tend to be tedious; therefore using a computer algebra system is not quite a luxury. Here goes: $$ \vec{r}(t) = \left[ \begin{matrix} a t \\ b t^2 \\ c t^3 \end{matrix} \right] \quad \Longrightarrow \\ \vec{\iota} = \, \stackrel{.}{\vec{r}} \, = \frac{d\vec{r}}{ds} = \frac{d\vec{r}}{dt}\frac{dt}{ds} = \left[ \begin{matrix} a \\ 2 b t \\ 3 c t^2 \end{matrix} \right] / \sqrt{a^2 + 4 b^2 t^2 + 9 c^2 t^4} \quad \Longrightarrow \\ \stackrel{..}{\vec{r}} \, = \frac{d^2 \vec{r}}{ds^2} = \, \stackrel{.}{\vec{\iota}} \, = \frac{d\vec{\iota}}{ds} = \frac{d\vec{\iota}}{dt}\frac{dt}{ds} = \left[ \begin{matrix} -2at(2b^2+9c^2t^2)\\2b(a^2-9c^2t^4)\\6ct(a^2+2b^2t^2) \end{matrix} \right]/(a^2+4b^2t^2+9c^2t^4)^2 \quad \Longrightarrow \\ \stackrel{...}{\vec{r}} \, = \, \stackrel{..}{\vec{\iota}} \, = \frac{d\stackrel{.}{\vec{\iota}}}{dt} \frac{dt}{ds} = \left[ \begin{matrix} 2a(2a^2b^2-24t^2b^4-162t^4b^2c^2+27a^2c^2t^2-405t^6c^4) \\ -8bt(27a^2c^2t^2-81t^6c^4+4a^2b^2) \\ 6c(a^4-6a^2b^2t^2-63a^2c^2t^4-8b^4t^4-90b^2t^6c^2) \end{matrix} \right] / (a^2+4b^2t^2+9c^2t^4)^{7/2} $$ With $\rho^2 = (\stackrel{.}{\vec{\iota}} \cdot \stackrel{.}{\vec{\iota}})$ - inner product - we find for the curvature $\rho$ : $$ \rho(t) = 2\sqrt{\frac{a^2b^2+9a^2c^2t^2+9t^4b^2c^2}{(a^2+4b^2t^2+9c^2t^4)^3}} $$ With the (hopefully) well-known formula $\;\det\left(\stackrel{.}{\vec{r}},\stackrel{..}{\vec{r}},\stackrel{...}{\vec{r}}\right) = \rho^2 \tau \;$ we find herefrom for the torsion $\tau$ : $$ \tau(t) = \frac{3 a b c}{a^2b^2+9a^2c^2t^2+9t^4b^2c^2} $$