Intersection of two parameterized curves

Cleanup first, as suggested in the comments. Then we have: $$ \mathbf r_1(t) = t\mathbf i + 2t \mathbf j + t^2\mathbf k = x \mathbf i + y \mathbf j + z \mathbf k \\ \mathbf r_2(u) = u^2\mathbf i + (1-u)\mathbf j + \left(2-u^2\right)\mathbf k = x \mathbf i + y \mathbf j + z \mathbf k $$ The intersection point is $(x,y,z) = (1,2,1)$ . Substitute: $$ t\mathbf i + 2t \mathbf j + t^2\mathbf k = u^2\mathbf i + (1-u)\mathbf j + \left(2-u^2\right)\mathbf k = 1 \mathbf i + 2 \mathbf j + 1 \mathbf k \\ $$ It follows that: $$ t = 1 \quad ; \quad 2t = 2 \quad ; \quad t^2 = 1 \\ u^2 = 1 \quad ; \quad (1-u) = 2 \quad ; \quad (2-u^2) = 1 $$ Giving as the solutions: $\,t=1\,$ and $\,u=-1$ ; this answers the first part of the question.
For the second part, differentiate: $$ \mathbf r_1'(t) = \mathbf i + 2\mathbf j + 2t\mathbf k \\ \mathbf r_2'(u) = 2u\mathbf i - 1\mathbf j - 2u\mathbf k $$ And substitute the solutions for $t$ and $u$: $$ \mathbf r_1'(1) = \mathbf i + 2\mathbf j + 2\mathbf k \\ \mathbf r_2'(-1) = -2\mathbf i - \mathbf j + 2\mathbf k $$ The inner product of $\mathbf r_1'(1)$ and $\mathbf r_2'(-1)$ is: $$ (\mathbf i + 2\mathbf j + 2\mathbf k) \cdot (-2\mathbf i - \mathbf j + 2\mathbf k) = -2 - 2 + 4 = 0 $$ Thus proving that the vectors tangent to the two curves at $(1,2,1)$ are perpendicular.