What does it mean to represent a number in term of a $2\times2$ matrix?

So far so good: $$ i^2 = \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] = \left[ \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right] = - \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = -1 $$ But what I'm missing in the current answers is this: $$ e^{i\theta} = e^{\left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta} = \\ \left(\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]\theta\right)^0 + \left(\left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta\right)^1 + \frac{1}{2!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^2 + \frac{1}{3!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^3 + \\ \frac{1}{4!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^4 + \frac{1}{5!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^5 + \frac{1}{6!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^6 + \frac{1}{7!}\left( \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta \right)^7 +\; \cdots \; = \\ \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] + \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta + \frac{1}{2!} \left[ \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]\theta^2 + \frac{1}{3!} \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]\theta^3 + \\ \frac{1}{4!} \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]\theta^4 + \frac{1}{5!} \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]\theta^5 + \frac{1}{6!} \left[ \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]\theta^6 + \frac{1}{7!} \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]\theta^7 + \; \cdots \; = \\ \left[ \; \begin{array}{cc} 1 - \theta^2/2! + \theta^4/4! - \theta^6/6! + \; \cdots \; & \; - \, \theta + \theta^3/3! - \theta^5/5! + \theta^7/7! + \; \cdots \\ + \, \theta - \theta^3/3! + \theta^5/5! - \theta^7/7! + \; \cdots \; & \; 1 - \theta^2/2 + \theta^4/4! - \theta^6/6! + \; \cdots \end{array} \; \right] = \\ \left[ \begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right] $$