Example PDE 1

Using the example as given by Dmoreno (MSE) and employing operator calculus we have: $$ z_{xx}-z_{yy} = \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = \left[ \left(\frac{\partial}{\partial x}\right)^2 - \left(\frac{\partial}{\partial y}\right)^2 \right] z = 0 \quad \Longleftrightarrow \\ \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) z = 0 \\ \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) z = 0 $$ Let $z(x,y) = f(x-y)$ , then: $$ \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) f(x-y) = \frac{\partial f}{\partial (x-y)}\frac{\partial (x-y)}{\partial x} + \frac{\partial f}{\partial (x-y)}\frac{\partial (x-y)}{\partial y} = \\ = \frac{\partial f}{\partial (x-y)}(+1) + \frac{\partial f}{\partial (x-y)}(-1) = 0 $$ Let $z(x,y) = g(x+y)$ , then: $$ \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) g(x+y) = \frac{\partial g}{\partial (x+y)}\frac{\partial (x+y)}{\partial x} - \frac{\partial g}{\partial (x+y)}\frac{\partial (x+y)}{\partial y} = \\ = \frac{\partial g}{\partial (x+y)}(+1) - \frac{\partial g}{\partial (x+y)}(+1) = 0 $$ It is concluded that the general solution is given by any linear combination of $f$ and $g$ as : $$ z(x,y) = \lambda\,f(x-y) + \mu\,g(x+y) $$