Condition numbers

Original equations: $$ \left\{ \begin{matrix} x_2 = 1 \\ 2 x_1 - x_2 = 1 \end{matrix} \right. \qquad \Longleftrightarrow \qquad \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ Condition number of the original equations: $$ \begin{vmatrix} 0-\lambda & 1 \\ 2 & -1-\lambda \end{vmatrix} = 0 \qquad \Longleftrightarrow \qquad \lambda(\lambda+1)-2 = 0 \qquad \Longleftrightarrow \\ (\lambda-1)(\lambda+2) = 0 \qquad \Longleftrightarrow \qquad \left|\frac{\lambda_{\mbox{max}}}{\lambda_{\mbox{min}}}\right| = 2 $$ Squared equations: $$ \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Longrightarrow \qquad \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \Longleftrightarrow \qquad \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} $$ Condition number of the squared equations: $$ \begin{vmatrix} 4-\lambda & -2 \\ -2 & 2-\lambda \end{vmatrix} = 0 \qquad \Longleftrightarrow \qquad (\lambda-4)(\lambda-2)-4 = 0 \qquad \Longleftrightarrow \\ \lambda^2-6\lambda+4=0 \qquad \Longleftrightarrow \qquad (\lambda-[3+\sqrt{5}])(\lambda-[3-\sqrt{5}]) = 0 \\ \Longleftrightarrow \qquad \left|\frac{\lambda_{\mbox{max}}}{\lambda_{\mbox{min}}}\right| = \frac{3+\sqrt{5}}{3-\sqrt{5}} \approx 6.854101961 > 2^2 $$ Normed equations: $$ \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Longleftrightarrow \qquad \begin{bmatrix} 0 & 1 \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/\sqrt{5} \end{bmatrix} $$ Condition number of the normed equations: $$ \begin{vmatrix} 0-\lambda & 1 \\ 2/\sqrt{5} & -1/\sqrt{5}-\lambda \end{vmatrix} = 0 \qquad \Longleftrightarrow \qquad \lambda(\lambda+1/\sqrt{5})-2/\sqrt{5} = 0 \qquad \Longleftrightarrow \\ \left(\lambda+\frac{1}{2\sqrt{5}}\right)^2 = \left(\frac{1}{2\sqrt{5}}\right)^2 + \frac{2}{\sqrt{5}} \qquad \Longleftrightarrow \qquad \lambda = - \frac{1}{2\sqrt{5}} \left[ 1 \pm \sqrt{1 + 8\sqrt{5}}\, \right] \\ \Longleftrightarrow \qquad \left|\frac{\lambda_{\mbox{max}}}{\lambda_{\mbox{min}}}\right| = \left|\frac{\sqrt{1 + 8\sqrt{5}}+1}{\sqrt{1 + 8\sqrt{5}}-1}\right| \approx 1.597711618 \\ \Longrightarrow \qquad \left(\left|\frac{\lambda_{\mbox{max}}}{\lambda_{\mbox{min}}}\right|\right)^2 \approx 2.552682414 $$ Normed and squared equations: $$ \begin{bmatrix} 0 & 2/\sqrt{5} \\ 1 & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 2/\sqrt{5} \\ 1 & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1 \\ 1/\sqrt{5} \end{bmatrix} \qquad \Longleftrightarrow \\ \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 6/5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2/5 \\ 4/5 \end{bmatrix} $$ Condition number of the normed and squared equations: $$ \begin{vmatrix} 4/5-\lambda & -2/5 \\ -2/5 & 6/5-\lambda \end{vmatrix} = 0 \qquad \Longleftrightarrow \qquad (4/5-\lambda)(6/5-\lambda)-4/25 = 0 \qquad \Longleftrightarrow \\ \lambda^2-2\lambda+4/5 = 0 \qquad \Longleftrightarrow \qquad (\lambda-[1+1/\sqrt{5}])(\lambda-[1-1/\sqrt{5}]) = 0 \\ \Longleftrightarrow \qquad \left|\frac{\lambda_{\mbox{max}}}{\lambda_{\mbox{min}}}\right| = \frac{1+1/\sqrt{5}}{1-1/\sqrt{5}} \approx 2.618033987 $$ Note that there is a (small) discrepancy between $\,2.552682414\,$ and $\,2.618033987\,$. According to theory, the eigenvalues of $A^T$ are those of $A$ but the eigenvectors are in general not the same: they are mutually orthogonal (reciprocal base). It is easy to see that the eigenvalues of $A^2$ are the square of the eigenvalues of $A$, but such is (in general) not the case for the eigenvalues of $A^TA$.