DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN The Netherlands

UNDERSTANDING AND USING BROUWER'S CONTINUITY RINCI LE

Wim Veldman

Report No. 0008 (March 2000)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN Toernooiveld 6525 ED Nijmegen The Netherlands

Understanding and using Brouwer's Continuity Principle

Wim Veldman

1 Brouwer's ontinuity Principle

example j < example n example njexample , , ,...

0

 α

 α

 $R \subseteq \mathcal{N} \times \mathbb{N}$ $\langle \alpha, m \rangle$ R αRm m α α \mathcal{N} \mathbb{N} αRm m α \mathcal{N} m \mathbb{N} m α α mm α m β

 m, n, \dots

 \mathbb{N}

$$\begin{split} R &\subseteq \mathcal{N} \times \mathbb{N} \\ \forall \alpha \in \mathcal{N} &\exists m \ \alpha R m \\ \forall \alpha \in \mathcal{N} &\exists n \ \exists m \ \forall \beta \in \mathcal{N} \end{split} \qquad \qquad i < n \ \alpha \ i \qquad \beta \ i \qquad \beta R m \end{split}$$

 $WC - \mathbb{N}$

The continuity of real functions $\mathbf{2}$

2.2
$$X\subseteq\mathcal{N} \qquad R\subseteq X\times\mathbb{N}$$

$$\forall \alpha\in X\;\exists m\;\;\alpha Rm \qquad \qquad i< n\;\;\alpha\;i \quad \beta\;i \qquad \beta Rm$$

$$r\quad\mathcal{N} \qquad X \qquad \qquad \alpha \quad X\;r\;\alpha \quad \alpha$$

2.3
$$q,q,\ldots$$
 \mathbb{Q}
$$n \mid q - q \mid < --- \mathbb{R}$$

$$lpha,eta$$
 γ $lpha$ γ

2.9
$$b, b, \ldots$$
 \mathbb{Q} $i k b \leq \alpha i$ $b \leq \alpha i k$ $\alpha i \leq b i$ $\alpha i k \leq b i$ $\alpha \mathbb{R}$

$$\mathbf{2.10}$$
 Theorem:

 \mathbb{Q}

3 Strong counter-examples

$$\neg \forall \alpha \in \mathcal{N} \quad \alpha \quad \mathbf{0} \lor \neg \quad \alpha \quad \mathbf{0}$$

$$\forall \alpha \in \mathcal{N} \quad \alpha \quad \mathbf{0} \lor / \quad \alpha \quad \mathbf{0}$$

$$\alpha \quad \mathcal{N} \qquad \qquad i < n \quad \alpha \quad i \qquad \qquad \alpha \quad \mathbf{0}$$

$$\alpha \quad \mathcal{N} \qquad \qquad i < n \quad \alpha \quad i \qquad \qquad \neg \quad \alpha \quad \mathbf{0}$$

f n f —

3.3

 $, \qquad \mathbb{R}$

4 Brouwer's first application

4.1 Theorem:

4.2

4.3

 \mathcal{N}

T α $\mathcal N$

$$T$$

$$\mathbf{0},\;\langle\;\rangle*\mathbf{0},\;\langle\;,\;\rangle*\mathbf{0},\;\langle\;,\;,\;\rangle*\mathbf{0},\;\ldots$$
 example
$$T$$

T

$$T$$
 \mathbb{N} T

4.6 Theorem:

4.8 Theorem:

 $n,m \qquad n\cdot T \qquad \qquad n \qquad \qquad \cdot T \qquad \qquad T \qquad \qquad .$

4.9
$$p \cdots \omega \qquad p \qquad \langle n, n, \dots, n \rangle \\ \langle p, p, \dots, p \rangle$$

$$\begin{matrix} k & & & & & & \\ & & \mathcal{N} & & & & \mathbb{T} \ \omega & \cdot p & \omega & \cdot p & \cdots \\ \omega & & \cdot p & & p \cdot T & \oplus p \cdot T & \oplus \dots \oplus p & \cdot T & & < \end{matrix}$$

4.10 Theorem:

$$\alpha, \beta \quad \omega \quad \alpha < \beta \quad \mathbb{T} \quad \alpha \quad \mathbb{T} \quad \beta$$

5 A model-theoretic observation

5.2 Theorem:

$$\alpha,\beta \quad \omega \qquad \alpha < \beta \qquad \mathbb{T} \ \alpha \qquad \qquad \mathbb{T} \ \beta$$

$$\exists x \ \varphi \ x \ \land \forall y \ \varphi \ y \ \rightarrow y \quad x$$

$$\exists x \qquad \qquad x \qquad \qquad T$$

6 Beginning the Borel hierarchy

 Π Σ

X

X

 $\begin{array}{ccc} \mathbf{PosIrr} & & \\ & \mathbf{PosIrr} & \\ & \mathbf{Rat} & \mathbf{\Sigma} & \\ & \mathbf{\Pi} & & \mathbb{R} \end{array}$

6.3 Theorem:

$$\mathbf{Rat} \subseteq G \qquad \qquad \alpha \quad \mathbf{PosIrr} \qquad \qquad \alpha \in G$$

$$G, G, \dots \qquad \qquad \mathbf{Rat} \subseteq G$$

$$\mathbf{Rat} \subseteq G \qquad \qquad \alpha \qquad \qquad n$$

$$q \quad < q \quad < q \qquad < q \qquad \qquad n$$

$$\alpha \quad , \alpha \quad , \dots , \alpha \quad n- \quad , \alpha \quad n- \quad \qquad q \quad < q$$

$$q \quad < q \quad < q \qquad \qquad q \quad < q$$

6.4 Theorem:

6.5

 Σ Π

6.6 Theorem:

6.7

7 Borel hierarchy theorems

7.1 $\mathcal{N} \qquad \qquad X \quad \mathcal{N} \qquad \qquad s \quad \mathbb{N} \qquad \qquad X \qquad \mathcal{N} \qquad \qquad \alpha \quad \mathcal{N} \qquad \qquad \mathcal{N} \qquad \mathcal{N} \qquad \qquad \mathcal{N}$

7.6 Theorem:

$$P$$
 P Finite $\subseteq Q \subseteq \mathbf{Almostfinite}$

Almostfinite

7.7
$$\alpha, \beta$$
 $\alpha \in \beta$ $\alpha \in \beta$

7.8 Theorem:

$$Q$$
 P Share T Almostfinite $Σ$ Share T

References