Can monsters of real analysis be tamed in this way?

Consider the Weierstrass Function (somewhat generalized for arbitrary wavelengths $\,\lambda > 0$ ): $$ W(x) = \sum_{n=1}^\infty \frac{\sin\left(n^2\,2\pi/\lambda\,x\right)}{n^2} $$ $W(x)$ is an example of a function that is everywhere continuous but nowhere differentiable (Or, for the nitpickers among us: differentiable only on a set of points of measure zero). We seek to remove the pathological character of the function $W(x)$ in very much the same way as has been tried with removing singularities in   Could this be called Renormalization? , namely by convolution with a "broadened" Dirac-Delta function, in our case a Gaussian: $$ \int_{-\infty}^{^\infty} W(\xi) \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\xi)^2/\sigma^2}\,d\xi = \sum_{n=1}^\infty \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{^\infty} \frac{e^{-\frac{1}{2}(x-\xi)^2/\sigma^2}\left[e^{i\,n^2\,2\pi/\lambda\,\xi}-e^{-i\,n^2\,2\pi/\lambda\,\xi}\right]}{2\,i\,n^2} $$ Exponents are rewritten as follows: $$ -\frac{1}{2}(x-\xi)^2/\sigma^2 \pm i\,n^2\frac{2\pi}{\lambda}\xi = - \frac{1}{2}\left(\frac{\xi}{\sigma}\right)^2 + \frac{x}{\sigma}\frac{\xi}{\sigma} \pm i\,n^2\frac{2\pi}{\lambda}\sigma\frac{\xi}{\sigma} - \frac{1}{2}\left(\frac{x}{\sigma}\right)^2 = -\frac{1}{2}\left[\frac{\xi}{\sigma}-\left(\frac{x}{\sigma} \pm i\,n^2\frac{2\pi}{\lambda}\sigma\right)\right]^2 -\frac{1}{2}\left(n^2\frac{2\pi}{\lambda}\sigma\right)^2 \pm i\,n^2\frac{2\pi}{\lambda}x $$ Giving for the convolution integral: $$ \sum_{n=1}^\infty \int_{-\infty}^{^\infty} e^{-\frac{1}{2}\left[\xi/\sigma-(x/\sigma \pm i\,n^2\,2\pi/\lambda\,\sigma)\right]^2}\,d(\xi/\sigma)\times\sigma\times\frac{1}{\sigma\sqrt{2\pi}}\;(=1)\\ \times e^{-\frac{1}{2}\left(n^2\,2\pi/\lambda\,\sigma\right)^2}\frac{e^{i\,n^2\,2\pi/\lambda\,x} - e^{-i\,n^2\,2\pi/\lambda\,x}}{2i\,n^2}\qquad \Longrightarrow \\ \overline{W}(x) = \sum_{n=1}^\infty e^{-\frac{1}{2}\left(n^2\,2\pi/\lambda\,\sigma\right)^2}\frac{\sin\left(n^2\,2\pi/\lambda\,x\right)}{n^2} $$ The idea is that a monster function which is "smoothed" in this way might be differentiable as well as continuous. A possible argument is that the derivative of the convolution integral can also be calculated in the following way: $$ \frac{d}{dx} \int_{-\infty}^{^\infty} W(\xi) \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\xi)^2/\sigma^2}\,d\xi = \int_{-\infty}^{^\infty} W(\xi) \frac{1}{\sigma\sqrt{2\pi}} \left(-\frac{x-\xi}{\sigma^2}\right) e^{-\frac{1}{2}(x-\xi)^2/\sigma^2}\,d\xi $$ But I'm not sure if this counts as a proof. Hence the question: is the Weierstrass monster function "tamed" by this "renormalization" procedure and has it become differentiable everywhere indeed?