What is wrong with this method for a rotated and shifted parabola?

This is actually the duplicate of an answer to the following question: Proving that for each two parabolas, there exists a transformation taking one to the other . According to the theory presented there, it is advantageous to write the OP's equation as follows: $$ 2(x-y) = \frac{1}{2} (x+2y)^2 \qquad \mbox{or} \qquad \eta = \frac{1}{2} \xi^2 $$ Where it is noted that $\;\xi\;$ physically corresponds with "time" . Anyway, it follows that: $$ \left\{ \begin{array}{l} \xi = x+2y \\ \eta = 2(x-y) \end{array}\right. \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{l} x = \frac{1}{3}\xi + \frac{1}{3}\eta \\ y = \frac{1}{3}\xi - \frac{1}{6}\eta \end{array}\right. $$ Giving the "velocities", "accelerations" and "origin" in the parameter equations of the parabola. $$ v_x = v_y = \frac{1}{3} \quad ; \quad a_x = \frac{1}{3} \quad ; \quad a_y = - \frac{1}{6} \quad ; \quad s_x = s_y = 0 $$ In matrix form: $$ \left[ \begin{array}{c} x \\ y \end{array} \right] = \left[ \begin{array}{cc} v_x & a_x \\ v_y & a_y \end{array} \right] \left[ \begin{array}{c} \xi \\ \xi^2/2 \end{array} \right] = \left[ \begin{array}{cc} +\frac{1}{3} & +\frac{1}{3} \\ +\frac{1}{3} & -\frac{1}{6} \end{array} \right] \left[ \begin{array}{c} \xi \\ \eta \end{array} \right] $$ If you believe that a linear mapping transforms a parabola into a parabola then we are done.

Otherwise. An orthogonal coordinate transformation, still according to the same theory, is obtained by a parameter shift $\;\tau$ : $$ \tau = \frac{v_x a_x + v_y a_y}{a^2_x + a^2_y} = \frac{1/3 \cdot 1/3 - 1/3 \cdot 1/6}{1/9 + 1/36} = \frac{2}{5} $$ Resulting in: $$ x = (v_x-a_x\tau)\xi + a_x\eta + (\frac{1}{2}a_x\tau^2-v_x\tau+s_x) = \frac{1}{5}\xi + \frac{1}{3}\eta - \frac{8}{75} \\ y = (v_y-a_y\tau)\xi + a_y\eta + (\frac{1}{2}a_y\tau^2-v_y\tau+s_y) = \frac{2}{5}\xi - \frac{1}{6}\eta - \frac{11}{75} $$ In matrix form: $$ \left[ \begin{array}{c} x \\ y \end{array} \right] = \left[ \begin{array}{cc} +\frac{1}{5} & +\frac{1}{3} \\ +\frac{2}{5} & - \frac{1}{6} \end{array} \right] \left[ \begin{array}{c} \xi \\ \eta \end{array} \right] - \left[ \begin{array}{c} \frac{8}{75} \\ \frac{11}{75} \end{array} \right] = \left[ \begin{array}{cc} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{array} \right] \left[ \begin{array}{c} \frac{1}{\sqrt{5}}\xi \\ -\frac{\sqrt{5}}{6}\eta \end{array} \right] - \left[ \begin{array}{c} \frac{8}{75} \\ \frac{11}{75} \end{array} \right] $$ The meaning of this is transforming $\;\eta = \xi^2/2\;$ into the original $\;(x+2y)^2=4(x-y)\;$ by scaling the $\xi$ coordinate with a factor $1/\sqrt{5}$ , scaling the $\eta$ coordinate with a factor $-\sqrt{5}/6$ (i.e. scaling and mirroring), followed by a rotation over an angle $\;\arctan(2)\;$ and a translation over $\;-(8,11)/75$ . Nobody will deny that $\;\eta = \xi^2/2\;$ represents a "standard" parabola and these transformations don't change that fact.


Viewports:

xmin := -5; xmax := 5;                  xmin := -1/3; xmax := 1.1;
ymin := -5; ymax := 5;                  ymin := -1/3; ymax := 1.1;
Colors: A. Einstein: Things should be made as simple as possible. But not simpler.