getting curl from gradient

Your formula $$\frac{1}{2}\nabla v^2-v\cdot \nabla v = v\times \nabla \times v$$ is a special case of the following, as copied literally from a Wikipedia page : $$ \nabla(\vec{u}\cdot\vec{v})= (\vec{u}\cdot\nabla)\vec{v}+(\vec{v}\cdot\nabla)\vec{u}+ \vec{u}\times(\nabla\times\vec{v})+\vec{v}\times(\nabla\times\vec{u}) $$ Step by step for your formula: $$ \frac{1}{2} \nabla (\vec{v} \cdot \vec{v} )= \frac{1}{2} \left[ \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array} \right] \left(v_x^2 + v_y^2 + v_z^2 \right) = \left[ \begin{array}{c} v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_y}{\partial x} + v_z \frac{\partial v_z}{\partial x} \\ v_x \frac{\partial v_x}{\partial y} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_z}{\partial y} \\ v_x \frac{\partial v_x}{\partial z} + v_y \frac{\partial v_y}{\partial z} + v_z \frac{\partial v_z}{\partial z} \end{array} \right] $$ $$ (\vec{v}\cdot\nabla)\vec{v} = \left(v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z} \right) \left[ \begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right] = \left[ \begin{array}{c} v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \\ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \\ v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \end{array} \right] $$ Left hand side: $$ \frac{1}{2} \nabla (\vec{v} \cdot \vec{v} ) - (\vec{v}\cdot\nabla)\vec{v} = \left[ \begin{array}{c} v_y \frac{\partial v_y}{\partial x} + v_z \frac{\partial v_z}{\partial x} - v_y \frac{\partial v_x}{\partial y} - v_z \frac{\partial v_x}{\partial z} \\ v_x \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_z}{\partial y} - v_x \frac{\partial v_y}{\partial x} - v_z \frac{\partial v_y}{\partial z} \\ v_x \frac{\partial v_x}{\partial z} + v_y \frac{\partial v_y}{\partial z} - v_x \frac{\partial v_z}{\partial x} - v_y \frac{\partial v_z}{\partial y} \end{array} \right] $$ Definition of cross product: $$ \vec{a}\times\vec{b} = \left[ \begin{array}{c} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{array} \right] $$ Right hand side: $$ \vec{v}\times(\nabla\times\vec{v}) = \vec{v} \times \left[ \begin{array}{c} \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \\ \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \\ \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \end{array} \right] = \left[ \begin{array}{c} v_y \frac{\partial v_y}{\partial x} - v_y \frac{\partial v_x}{\partial y} - v_z \frac{\partial v_x}{\partial z} + v_z \frac{\partial v_z}{\partial x} \\ v_z \frac{\partial v_z}{\partial y} - v_z \frac{\partial v_y}{\partial z} - v_x \frac{\partial v_y}{\partial x} + v_x \frac{\partial v_x}{\partial y} \\ v_x \frac{\partial v_x}{\partial z} - v_x \frac{\partial v_z}{\partial x} - v_y \frac{\partial v_z}{\partial y} + v_y \frac{\partial v_y}{\partial z} \end{array} \right] $$ You can check out (any typos?) that left hand side and right hand side are equal.
Its' a tedious job though, even more if you try to do it for the Wikipedia formula.