How find this sum $\sum_{ab+cd=2^m}ac=?$

Disclaimer: this is only a partial answer, but something may be better than nothing. The approach is a brute force method, programming is in Pascal:
program china_math;
function twee(macht : integer) : integer; { Compute 2^macht } var k : integer; h : integer; begin h := 1; for k := 1 to macht do h := h shl 1; twee := h; end;
procedure test(m : integer; blah : boolean); { The problem } var i,j,k,a,b,c,d : integer; s,N,ii,jj,kk : integer; OK : boolean; begin N := twee(m); s := 0; ii := (N div 2); for i := 1 to ii do begin a := 2*i-1; jj := ((N div a) div 2)+1; for j := 1 to jj do begin b := 2*j-1; kk := ((N-a*b) div 2)+1; if (N-a*b) > 0 then for k := 1 to kk do begin c := 2*k-1; OK := (N-a*b) mod c = 0; if not OK then Continue; d := (N-a*b) div c; if blah then Writeln(a,'*',b,'+',c,'*',d,'=',N); s := s + a*c; end; end; end; if not blah then Writeln(m:6,s:12,' =?= ',twee(3*m-3)); end;
procedure doen; var m : integer; begin test(4,true); Writeln; for m := 1 to 11 do test(m,false); end;
begin doen; end.
Computational details for e.g. $m=4$:

a*b+c*d=2^m
1*1+1*15=16
1*1+3*5=16
1*1+5*3=16
1*1+15*1=16
1*3+1*13=16
1*3+13*1=16
1*5+1*11=16
1*5+11*1=16
1*7+1*9=16
1*7+3*3=16
1*7+9*1=16
1*9+1*7=16
1*9+7*1=16
1*11+1*5=16
1*11+5*1=16
1*13+1*3=16
1*13+3*1=16
1*15+1*1=16
3*1+1*13=16
3*1+13*1=16
3*3+1*7=16
3*3+7*1=16
3*5+1*1=16
5*1+1*11=16
5*1+11*1=16
5*3+1*1=16
7*1+1*9=16
7*1+3*3=16
7*1+9*1=16
9*1+1*7=16
9*1+7*1=16
11*1+1*5=16
11*1+5*1=16
13*1+1*3=16
13*1+3*1=16
15*1+1*1=16
Output for $1 \le m \le 11$:

     m         sum =?= 2^(3*m-3)
     1           1 =?= 1
     2           8 =?= 8
     3          64 =?= 64
     4         512 =?= 512
     5        4096 =?= 4096
     6       32768 =?= 32768
     7      262144 =?= 262144
     8     2097152 =?= 2097152
     9    16777216 =?= 16777216
    10   134217728 =?= 134217728
    11  1073741824 =?= 1073741824
This leads to the following Conjecture: $$\sum_{\substack{ab+cd=2^m\\ a,b,c,d \text{ are odd}}}ac \,=\, 2^{\,3m-3}$$ And the numerical work shows that the Conjecture is a Theorem for $1 \le m \le 11$ ; which is as far as we can go with the given limited precision of standard (Delphi) Pascal.