How find this system equation

The 3-D $(x,y,z)$ problem can be reduced to a 2-D problem by substituting $\;z = 3xy-x-y\;$ into $\;x^2 + y^2 + z^2 = 3yz\;$ and $\;x^3 + y^3 + z^3 = 3xz\,$ , giving the curves $\;\color{red}{f(x,y) = 0}\;$ and $\;\color{green}{g(x,y) = 0}\;$ where $f$ and $g$ are defined by: $$ f(x,y) = 2 x^2 + 5 y^2 + 9 x^2 y^2 - 6 x^2 y - 15 x y^2 + 5 x y\\ g(x, y) = 27 x^3 y^3 - 27 x^3 y^2 - 27 x^2 y^3 + 9 x^3 y + 18 x^2 y^2 + 9 x y^3 - 12 x^2 y - 3 x y^2 + 3 x^2 + 3 x y$$ A picture says more than a thousand words:

Note that $x$ is a factor of $g(x,y)$ , hence the $\color{green}{green}$ y-axis. Also note that there are trivial solutions $(x,y,z) = \{(0,0,0),(1,1,1)\}\;$ and that the trivial solution $\,(x,y,z) = (0,0,0)\,$ is invisible.
The two non-trivial points where the two curves intersect are found numerically with MAPLE :

fsolve({f(x,y)=0,g(x,y)=0},{x,y},{x=0.5..1,y=-1..-0.5});
fsolve({f(x,y)=0,g(x,y)=0},{x,y},{x=0..0.5,y=-1..-0.5});
Our solution is (but not quite) in agreement with the answer found by miracle173 : $$ \left\{x = 0.6867320382, y = -0.7012678009, z = -1.430213436 \right\}\\ \left\{x = 0.3367211174, y = -0.7012678009, z = -0.343848349 \right\} $$ But ah, what the OP probably wants is an analytical solution. So here comes / MAPLE says: $$ \left\{ x={\frac {1}{72}}\,{\frac {9\, \left( 12+4\,\sqrt {5} \right) ^{4/3}-48\,\sqrt {5}-48\,\sqrt [3]{12+4\,\sqrt {5}}+3\,\sqrt {9\, \left( 12+4\,\sqrt {5} \right) ^{8/3}-96\, \left( 12+4\,\sqrt {5} \right) ^{4/3}\sqrt {5}-96\, \left( 12+4\,\sqrt {5} \right) ^{5/3}- 3840+512\,\sqrt {5}\sqrt [3]{12+4\,\sqrt {5}}+1536\, \left( 12+4\, \sqrt {5} \right) ^{2/3}-320\, \left( 12+4\,\sqrt {5} \right) ^{4/3}- 3072\,\sqrt {5}+768\, \left( 12+4\,\sqrt {5} \right) ^{2/3}\sqrt {5}}} { \left( 12+4\,\sqrt {5} \right) ^{2/3}}},y=-1/6\,\sqrt [3]{12+4\, \sqrt {5}}-2/3\,{\frac {1}{\sqrt [3]{12+4\,\sqrt {5}}}} \right\} $$ $$ \left\{ x={\frac {1}{72}}\,{\frac {9\, \left( 12+4\,\sqrt {5} \right) ^{4/3}-48\,\sqrt {5}-48\,\sqrt [3]{12+4\,\sqrt {5}}-3\,\sqrt {9\, \left( 12+4\,\sqrt {5} \right) ^{8/3}-96\, \left( 12+4\,\sqrt {5} \right) ^{4/3}\sqrt {5}-96\, \left( 12+4\,\sqrt {5} \right) ^{5/3}- 3840+512\,\sqrt {5}\sqrt [3]{12+4\,\sqrt {5}}+1536\, \left( 12+4\, \sqrt {5} \right) ^{2/3}-320\, \left( 12+4\,\sqrt {5} \right) ^{4/3}- 3072\,\sqrt {5}+768\, \left( 12+4\,\sqrt {5} \right) ^{2/3}\sqrt {5}}} { \left( 12+4\,\sqrt {5} \right) ^{2/3}}},y=-1/6\,\sqrt [3]{12+4\, \sqrt {5}}-2/3\,{\frac {1}{\sqrt [3]{12+4\,\sqrt {5}}}} \right\} $$ And $z$ can be calculated from $\;z = 3xy-x-y\;$ . Whatever .. What we see is that the $y$-coordinates of the two solutions are indeed exactly the same and I would like to hear a simple argument for this.