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According to standard mathematics, two so-called Steiner ellipses are associ-
ated with an arbitrary triangle: the Circumellipse and the Inellipse.

http://mathworld.wolfram.com/SteinerEllipse.html

It is argued in this article that a Steiner ellipse can also be associated with a
Quadrilateral. To be precise: it is the CircumEllipse of the dual polygon of
that quadrilateral (which happens to be a paralellogram). As with the triangle,
the Steiner ellipse is always a multiple of the Ellipse of Inertia / Ellipse of
Variances. Gauss Continuization is much simpler than with triangles. Before
you start complaining about unknown terminology, here is some prerequisite
reading:

http://hdebruijn.soo.dto.tudelft.nl/jaar2011/steiners.pdf

http://hdebruijn.soo.dto.tudelft.nl/jaar2011/gauss_2d.pdf

Drawing an Ellipse

An ellipse can be conceived as an a�ne transformation of a circle.
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Indeed, when making a drawing of an ellipse, it would be handsome to have it
in parametrized form. That is, we seek an equivalent like this:
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�
x = �x + ax cos(t) + bx sin(t)
y = �y + ay cos(t) + by sin(t)

Multiply the �rst equation with ay, the second with ax and substract:

ay(x� �x)� ax(y � �y) = (bxay � axby) sin(t) =)

sin(t) =
ay(x� �x)� ax(y � �y)

bxay � axby

Multiply the �rst equation with by, the second with bx and substract:

by(x� �x)� bx(y � �y) = (byax � aybx) cos(t) =)
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cos(t) =
by(x� �x)� bx(y � �y)

byax � aybx

Now use the well known identity:

cos2(t) + sin2(t) = 1

Giving: �
ayx

0 � axy
0

byax � aybx
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0
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�2

= 1

Where x0 = x � �x and y0 = y � �y . Drop the primes 0 for the sake of
simplicity. To put it otherwise, choose the midpoint of the ellipse as the origin
of the coordinate system: (�x; �y) = (0; 0).
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And work out:

(a2y + b2y) x
2 � 2(axay + bxby) xy + (a2x + b2x) y

2

(byax � aybx)2
= 1

Or:

(a2y + b2y) x
2 � 2(axay + bxby) xy + (a2x + b2x) y

2 = (byax � aybx)
2

Check this as well:
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2
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2 � 2(axby)(aybx) = (axby � aybx)
2

De�ne the quantities (A;B;C) as follows

8<
:

A = (a2y + b2y)
B = (axay + bxby)
C = (a2x + b2x)

Then it follows that:

(AC �
1

4
B2) = (a2y + b2y)(a

2
x + b2x)� (axay + bxby)

2 = (axby � aybx)
2

The following standard form of the ellipse is herewith suggested:

Ax2 � 2Bxy + Cy2

AC � 1
4B

2
= 1
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Indeed. Suppose that we have another member of the same family of ellipses:

Ax2 � 2Bxy + Cy2

AC � 1
4B

2
= F

With F > 0 an arbitrary positive constant. Then:

F:Ax2 � 2F:Bxy + F:Cy2

(AC � 1
4B

2):F 2
= 1

Simply re-de�ne the quantities (A;B;C) as follows and we're done.

8<
:

A = F:(a2y + b2y)
B = F:(axay + bxby)
C = F:(a2x + b2x)

With (�x; �y) = (0; 0) as the origin, the parameter representation still is:

�
x = ax cos(t) + bx sin(t)
y = ay cos(t) + by sin(t)

And the derivatives are:�
dx=dt = �ax sin(t) + bx cos(t)
dy=dt = �ay sin(t) + by cos(t)

The area of the ellipse is then expressed by:
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1

2

I
f[�axay + bxby + axay � bxby] cos(t) sin(t) +
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(x dy � y dx) = � jaxby � bxayj = �

r
AC �

1

4
B2

So the area of the ellipse is � times the paralellogram area spanned by the vectors
~a and ~b in its parameter representation; absolute value if a positive outcome is
to be preferred. It is also equal to � times half the root of minus the (negative)
discriminant of the conic section.
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Steiner InEllipse

Consider an arbitrary quadrilateral, with vertex coordinates as follows.
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A picture says more than a thousand words:

Additional de�nitions:
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Easy to prove consequences:
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In the language of geometry: (a; b; c; d) is a parallellogram. The diagonals of this
paralellogram are intersecting each other in equal pieces at ~0. It is thus obvious
that the following ellipse, from the previous subsection, goes through the four
vertices of this paralellogram.

~r =

�
x
y

�
= ~0 + ~a cos(t) +~b sin(t) ()

�
x = x0 + ax cos(t) + bx sin(t)
y = y0 + ay cos(t) + by sin(t)
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The paralellogram is the dual polygon of our quadrilateral. We conclude that
there is no Steiner ellipse for an arbitrary quadrilateral, but there is always a
Steiner (Circum)Ellipse for the dual polygon of a quadrilateral. The latter ellipse
can be regarded as a Steiner InEllipse of the quadrilateral. (With somewhat less
nice properties, perhaps, when compared with the Steiner ellipses for triangles)

Ellipse of Inertia

Let's investigate now if there is a relationship between the Steiner ellipse of
the dual polygon and its Ellipse of Inertia. To that end, we must be able to
calculate the moments of inertia / variances of the dual polygon. Conceiving it
as a Quadrilateral gives one possible interpolation. Conceiving it as a Five Point
Star gives another possible interpolation. We need an interpolation anyway for
carrying out integrations associated with the moments. Prerequisite reading for
the quadrilateral is availaible in PDF format:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/vierhoek.pdf

Prerequisite reading for the Five Point Star is available only as plain TEXT:

http://hdebruijn.soo.dto.tudelft.nl/www/article/SUNA04.NET

But there is a shortcut via another project, available in PDF format as well:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/octaeder.pdf

It's easier to work top down from this three dimensional result than to build
a new theory for two dimensions, from �rst principles bottom up. (The latter
may be a useful exercise for some. Not that it shall lead to a di�erent insight,
though.) The 3-D result which is of immediate use for us is found on page 10
of Numerical Method for 3D Ideal Flow:

fo(�; �; �) = fo0 + (fo2 � fo0) � + (fo4 � fo0) � + (fo6 � fo0) �

Removing 3-D redundancy means to get rid of the local coordinate �:

fo(�; �) = fo0 + (fo2 � fo0) � + (fo4 � fo0) �

Transformation for the x and y coordinates is isoparametric:

�
xo(�; �)� xo0 = (xo2 � xo0) � + (xo4 � xo0) �
yo(�; �)� yo0 = (yo2 � yo0) � + (yo4 � yo0) �

The midpoint ~0 is perferrably - and �nally - adopted as the origin (x0; y0) =
(xo0; yo0) = (0; 0) of our (x; y) coordinate system. Implementing this:

�
xo(�; �)
yo(�; �)

�
=

�
xo2
yo2

�
� +

�
xo4
yo4

�
�
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At last, the following objects can safely be identi�ed:
�
xo2
yo2

�
= ~a ;

�
xo4
yo4

�
= ~b

So this is the end result, for our two dimensional case:

~r(�; �) = ~a � +~b � ()

�
x(�; �) = ax � + bx �
y(�; �) = ay � + by �

Another prerequisite reading is passing by:

http://hdebruijn.soo.dto.tudelft.nl/jaar2011/steiners.pdf

This is the �nal result from "Triangle Integrals" in the above publication:ZZ
�m�n d�d� =

m!n!

(m+ n+ 2)!

What we observe is that the dual polygon has a linear interpolation, which is
extended over four triangles, namely

�
~a;~b;~0

�
;

�
~b;~c;~0

�
;

�
~c; ~d;~0

�
;

�
~d;~a;~0

�

It must be con�rmed that the origin ~0 has indeed �rst order moments as its
components. For the �rst triangle:ZZ �

~a � +~b �
�
dx dy=

ZZ
dx dy = 2~a

ZZ
� d� d� + 2~b

ZZ
� d� d� =

1

3
~a+

1

3
~b

Likewise for the other triangles, giving:

1

3

h�
~a+~b

�
+
�
~b+ ~c

�
+
�
~c+ ~d

�
+
�
~d+ ~a

�i
=

1

3

h�
~a+~b

�
+
�
~b� ~a

�
+
�
�~a�~b

�
+
�
�~b+ ~a

�i
= ~0

Now go for the second order moments. Start with:
�
x2 xy
xy y2

�
=

�
(ax� + bx�)

2 (ax� + bx�)(ay� + by�)
(ax� + bx�)(ay� + by�) (ay� + by�)

2

�
=

�
ax bx
ay by

� �
�2 ��
�� �2

� �
ax ay
bx by

�

So the integrals to be calculated are:

2

ZZ
�2d� d� = 2

ZZ
�2d� d� = 2

2:1

2:3:4
=

1

6

2

ZZ
� � d� d� = 2

1:1

2:3:4
=

1

12
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For the triangles
�
~a;~b;~0

�
and

�
�~a;�~b;~0

�
resulting in:

�
�xx �xy
�xy �yy

�
=

1

6

�
a2x + axbx + b2x axay + (axby + aybx)=2 + bxby

axay + (axby + aybx)=2 + bxby a2y + ayby + b2y

�

Add this to the results for the other triangles
�
~b;�~a;~0

�
and

�
�~b;~a;~0

�
:

1

6

�
a2x � axbx + b2x axay � (axby + aybx)=2 + bxby

axay � (axby + aybx)=2 + bxby a2y � ayby + b2y

�

The end result is the weighted mean of all these values. Note, however, that the
areas of the triangles are all the same. Consequently, summation is easy:

�
�xx �xy
�xy �yy

�
=

1

6

�
a2x + b2x axay + bxby

axay + bxby a2y + b2y

�

The Ellipse of Inertia - with the orgin as the midpoint - is thus:

�
x y

� 1
6

�
a2x + b2x axay + bxby

axay + bxby a2y + b2y

�
�1 �

x
y

�
= 1

Apart from the factor 1=6, this is exactly the ellipse as known from previous
subsections, such as Drawing an Ellipse. But the latter is precisely our Steiner
ellipse for the (inner paralellogram of the) quadrilateral. It is thus proved that
the Steiner ellipse of a quadrilateral is six times the ellipse of inertia of the same
quadrilateral:

�
(x� �x) (y � �y)

� 1

�xx�yy � �2xy

�
�yy ��xy
��xy �xx

� �
x� �x
y � �y

�
= 6

Let:

E(x; y) =
�yy(x� �x)

2 � 2�xy(x� �x)(y � �y) + �xx(y � �y)
2

�xx�yy � �2xy

Then, for the Steiner ellipse of a quadrilateral:

E(x; y) = 6

Gauss Continuization

The theory of Gauss-Steiner Continuization on quadrilaterals is quite analogous
to the theory of continuization for triangles, but it is signi�cantly simpler. In

7



two dimensions, take a non-constant discrete function fi, de�ned at the vertices
(xi; yi) of quadrilaterals in a Finite Element mesh. The midpoints of these quads
(Q) are (xQ; yQ) and corresponding function values fQ = (f1 + f2 + f3 + f4)=4
(with xQ and yQ as special cases).

f(x; y) =
X
Q

GQ(x; y) fQ JQ=2

Here JQ are twice the (positive) areas of the quadrilaterals (Q). Twice the area
of a quadrilateral can be calculated easily with determinants:

JQ = x1y2 � x1y4 � x2y1 + x2y3 � x3y2 + x3y4 + x4y1 � x4y3

The distributions GQ, for the moment being, are the following:

GQ(x; y) =
e�

1

2 [syy(x��x)
2
�2sxy(x��x)(y��y)+sxx(y��y)

2]=(sxxsyy�s2xy)

2�
q
sxxsyy � s2xy

Where:

6�2
�
�xx �xy
�xy �yy

�
= �2

�
sxx sxy
sxy syy

�
= �2

�
a2x + b2x axbx + ayby

axbx + ayby a2y + b2y

�

Here � and � are the �rst and second order moments of the quad (Q) and � is
an enlargement of the Steiner ellipse, dependent on the desired accuracy. An
estimate previously employed (with triangles) is:

� =

p
2 ln(2=�)

�

The denominator of GQ can be analyzed further with results from the previous
subsections. It is twice the area of the �-extended Steiner ellipse:

2�
q
sxxsyy � s2xy = �2 2� jaxby � aybxj = 2� (ellipse area)

Gathering everything together, here comes the �nal formula. It is noted that
the quadrilateral areas JQ, in general, do not cancel out against the areas of the
(restricted) Steiner ellipses.

f(x; y) =
1

2� �2

X
Q

JQ=2

jaxby � aybxjQ
GQ(x; y) fQ

And GQ is rede�ned as:

GQ(x; y) = e�
1

2 [syy(x��x)
2
�2sxy(x��x)(y��y)+sxx(y��y)

2]=(sxxsyy�s2xy)

All the other quantites have been previously de�ned. There are a few issues
left, such as: how many quadrilaterals have to be taken into account, in order
to arrive at a sensible approximation for the function f? But it is supposed
that these questions can be answered in an analogous way as with triangles, an
exercise that has been done before.
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Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)
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