
Long Vehicle Kinematics

Imagine a long vehicle with length L, riding on a tra�c circle with radius R.
Steering is done via the front wheels and, to be quite precise, R is the radius
of the circle traversed by the midpoint of the axis joining the front wheels.
Ackermann steering geometry is assumed for the front wheels:

http://en.wikipedia.org/wiki/Ackermann_steering_geometry

Furthermore, it is assumed that the rear wheels are �xed, though most probably
provided with a di�erential gear. If conditions of no slip are assumed for the
rear wheels, then it is obvious that the rear wheels each must be perpendicular
to the radius of another circle with radius r, where r is the mean distance of
the rear wheels to the midpoint of both circles.

From the above picture, it is obvious, though somewhat surprising perhaps,
that the relationship between the two radii R and r and the length L of the
vehicle is simply given by Pythagoras theorem, where R and L are known and
r is to be calculated:

r2 + L2 = R2 =) r =
p
R2 � L2

Di�erential Equations

It is questioned what the equations of motion are of the midpoint ~rA between
the rear wheels. There is no question about the equations of motion of the

1



midpoint ~rS between the front wheels, because it's there where the steering is.
Let ~L = ~rS � ~rA be the vector representing the vehicle, which is the vector
that joins (the middles of) the front ~rS and the rear ~rA. Then the equations of
motion are as follows, as a bit thinking shall reveal.

~vA = _~rA =
( ~vS � ~L)
(~L � ~L)

~L =
( ~vS � ~L)
L2

~L

In words: the velocity vector ~vA of the rear wheels is the projection of the
velocity vector ~vS of the front wheels on the vehicle vector ~L.
It will be demonstrated in the �rst place that the simple solution for a vehicle
riding on a tra�c circle satis�es the di�erential equations. Step by step and let
MAPLE do the work. Abbreviations are employed for c = cos(�) and s = sin(�)
where � is the angle between the vector ~rS to the front and the vector ~rA to the
rear. The solution is:�

xA(t) = r cos(!t� �) = r [cos(!t) cos(�) + sin(!t) sin(�)]
yA(t) = r sin(!t� �) = r [sin(!t) cos(�)� cos(!t) sin(�)]

=)
�

xA(t) = r [cos(!t)r=R+ sin(t)L=R]
yA(t) = r [sin(!t)r=R� cos(t)L=R]

Substituting into MAPLE learns that it satis�es the di�erential equations:

> r := sqrt(R^2-L^2);

> x_S := R*cos(omega*t); y_S := R*sin(omega*t);

> c := r/R; s := L/R;

> x_A := r*(cos(omega*t)*c + sin(omega*t)*s);

> y_A := r*(sin(omega*t)*c - cos(omega*t)*s);

> L_x := x_S - x_A; L_y := y_S - y_A;

> u_S := diff(x_S,t); v_S := diff(y_S,t);

> u_A := diff(x_A,t); v_A := diff(y_A,t);

> prj := (L_x*u_S + L_y*v_S)/L^2;

> evalb(simplify(u_A = prj*L_x));

true

> evalb(simplify(v_A = prj*L_y));

true

Ride on Exit

Imagine the same long vehicle with length L, but with its front wheels no longer
riding on that tra�c circle. The di�erential equations are, when written in scalar
form: �

_xA = [U:(xS � xA) + V:(yS � yA)] =L
2:(xS � xA)

_yA = [U:(xS � xA) + V:(yS � yA)] =L
2:(yS � yA)
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Assume that the front wheels of the vehicle are exiting the tra�c circle and
are now moving on a straight line. Assume the direction of the x-axis for that
straight line. Then V = 0. Hence:

_xA = U:(xS � xA)
2=L2

The calculations are started when the front wheels are at the beginning of the
straight line but the rear wheels are still riding on the tra�c circle. Then,
as a little geometry reveals, the latter are o� the straight line at a distance
L : R = H : L =) H = L2=R. And:

xS(t) = Ut+
p
L2 �H2 =) _xS = U =) _xS� _xA = U�U(xS�xA)2=L2

Hence the di�erential equation:

_x = U
�
1� (x=L)2

�
where x = xS � xA

With boundary condition:

xA(0) = 0 =) x(0) =
p
L2 �H2

Solve:
dx=L

1� (x=L)2
= U=Ldt

1

2

d(+x=L)

1 + x=L
� 1

2

d(�x=L)
1� x=L

=
U

L
dt

1

2
ln(1 + x=L)� 1

2
ln(1� x=L) =

U

L
t+ C

ln

�
1 + x=L

1� x=L

�
= 2

U

L
t+ C

1� x=L

1 + x=L
= Ce�2:U=L:t
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Lemma (without proof):

a =
1� b

1 + b
() b =

1� a

1 + a

Herewith:
x

L
=

1� Ce�2:U=L:t

1 + Ce�2:U=L:t

xA(t) = xS(t)� L
1� Ce�2:U=L:t

1 + Ce�2:U=L:t

Where the constant C is yet to be determined. For t = 0:

1�
p
L2 �H2=L

1 +
p
L2 �H2=L

= C

For t!1 (vehicle on straight road) is xA(t) = xS(t)� L.
Much more interesting, of course, is the solution for the y coordinate:

_yA = [U:(xS � xA) + V:(yS � yA)] =L
2:(yS � yA)

Where yS(t) = 0, V = 0, xS(t) � xA(t) = x(t) and xA(t) is a known outcome.
Let yS(t)� yA(t) = y(t). Then:

_(yS � yA)(t) = _y = �U:(xS � xA)=L
2:(yS � yA) = �U:x=L2:y

_y=y = �U:x=L2 =) y(t) = Y e�
R
U:x(t)=L2:dt

With y(0) = �H. Here x(t) is the solution found previously. I have resorted to
MAPLE to do the rest of the work for me:

> C := (1-sqrt(L^2-H^2)/L)/(1+sqrt(L^2-H^2)/L);

> x(t) := L*(1-C*exp(-2*U/L*t))/(1+C*exp(-2*U/L*t));

> simplify(exp(-int(U*x(t)/L^2,t)));

The outcome is not even overly complicated:

p
e(�

2Ut

L )

L+
p
L2 �H2 + e(�

2Ut

L )L� e(�
2Ut

L )pL2 �H2

For t = 0 we �nd (by hand) that yS(0)� yA(0) = �H = y(0). So:

Y
1

L+
p
L2 �H2 + L�

p
L2 �H2

=
Y

2L
= �H =) Y = �2LH = �2L3=R

yA(t) =
2L3=Re�U=Lt

L+
p
L2 �H2 + e(�

2Ut

L )L� e(�
2Ut

L )pL2 �H2
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For t!1 this outcome approaches zero. The decay time for this to happen is
of order L=U = the length divided by the velocity of the vehicle. Like this:

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)
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