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The de�nition of Gauss-Steiner Continuization, as employed in this article, is
the following. A set of discrete real function values is the range of values to be
approximated, with a function that is continuous and di�erentiable. This is to
be accomplished with a comb of Gauss distributions. Therefore we start with
a generalization of one-dimensional Uniform Combs of Gaussians, for irregular
1-D grids and non-constant functions. The two-dimensional discretization has
an arbitrary Finite Element like mesh of triangles as its domain. With help of
the family of Steiner ellipses, an analogue of the one-dimensional comb of Gauss
distributions is constructed. The discretization at hand is made continuous and
di�erentiable in this way. Prerequisite reading is the article "Steiner Ellipses
and Variances" at:

http://hdebruijn.soo.dto.tudelft.nl/jaar2011/steiners.pdf

Combs of Gaussians

Prerequisite reading:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/document.pdf

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/kammen/document.pdf

The Fourier series of a Uniform Comb of Gaussians G(x) is given by:
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Here � is the grid spacing, x is the one-dimensional coordinate, � is the spread,
! = 2�=�. Suppose that the outcome of the Poisson Summation Formula on
the right hand side is approximately the constant function f(x) = 1. Then it
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has been found that such is resulting in the following condition for the spread,
if � is a given tolerance:

jG(x)� 1j � � () � � �
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Two generalizations are possible now. The �rst one is a non-uniform grid. The
second one is a non-constant function. We start with the �rst generalization.
Instead of a uniform grid L�, consider coordinates x0; x1; x2; : : : ; xi; : : : , where
x0 < x1 < x2 : : : < xi < : : : Then de�ne �i = xi � xi�1 for i = 1; 2; 3; : : : It is
expected that the comb of Gaussians at an irregular grid will converge likewise
to the constant function f(x) = 1:
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Provided that irregular spreads �i are related to the now irregular intervals �i

according to:
�i
1
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In order to avoid confusion with a quantity in the next subsection, which is the
area of a triangle, we replace �i=2 by Ri, i.e. the radius of the interval. And
we assume equality:

�i = �Ri where � =

p
2 ln(2=�)

�

The second generalization is a non-constant discrete function, de�ned at the
grid points fxig as real values fi. We consider the midpoints of the intervals �i

as xi = (xi + xi�1)=2 and f i = (fi + fi�1)=2 for i > 0. Then:
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Where it is expected that f(xi) � f i and therefore f can be considered as a
continuization of the discretization fi, ipse est an attempt to make the discrete
continuous. It is noted that the above can be considered as a Riemann sum of
the following integral.
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Not a quite rigorous argument for con�rming what we "expect", but it will do.
The grid is re�ned �rst. The spread is so much coarser that the Riemann sum
is a good approximation of the integral "before" the bell shapes of the Gauss
distributions approximate the delta function. Therefore it is expected that the
function f is rather a smoothing of the "real" function f . Again, a picture says
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more than a thousand words:

Skewed 2-D Bell Shape

Associated with the �rst and second order moments in one dimension is the
Gauss function, also known as the normal distribution in Statistics:
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The exponent (apart from the factor 1=2) could have been written as:
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In the general two-dimensional case, �xx will be replaced by the tensor:
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And the inverse 1=�xx by the inverse of this matrix:
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The accompanying quadratic form is:
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This in turn corresponds to the generalization of the Gauss Function in 2-D:
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A simpli�ed quadratic form for the inverse problem can be found easily, because
the eigenvalues of an inverse matrix are always the inverses of the eigenvalues
of the original tensor. The latter are �1 and �2. Hence the former are found
immediately to be:

1=�1 and 1=�2
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This in turn means that the Gauss function, when transformed to eigenvector
coordinates, is simply given by:

G(x; y) = e�
1

2 [(x��x)
2=�1+(y��y)

2=�2]

What's still missing is a norming factor for the skewed 2-D Gaussian function.
To this end, integrate the function G(x; y) over the whole plane:ZZ

G(x; y) dx dy =
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Rk = �k=2 is half the width of a discretization interval, in a further restriction
on the spread �k:

�k � �Rk where � =
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In two dimensions, take a non-constant discrete function fi, de�ned at the
vertices (xi; yi) of triangles in a Finite Element mesh. Let the midpoints of the
triangles (k) be (xk; yk) and corresponding function values fk = (f0+f1+f2)=3.
Replace the lengths �k by triangle areas Jk=2. Then:

f(x; y) =
X
k

Gk(x; y) fk Jk=2

Where the distributionsG are the following, now rather obvious, generalizations:
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Here � and � are the �rst and second order moments of the triangle (k). And
this is the equation of the Circumellipse, multiplied by the factor �, squared
because of the squares:
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Where �x = x and �y = y and:
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The denominator can be analyzed further with results from Triangle Moments

in the prerequisite reading Steiner Ellipses and Variances:
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And this outcome must be multiplied with 8�2 for an outer ellipse that extends
beyond the restriction on the spreads:
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Here 4�=(3
p
3) is recognized as the (constant) proportion between the area of

the Steiner circumellipses and the area of the circumscribed triangles. Gathering
everything together, here comes the �nal formula. It is noted that the triangle
areas J=2 cancel out.
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Where:

G�(x; y) = e�
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All the other quantites have been previously de�ned. There is one issue left,
though: how many triangles have to be taken into account, in order to acquire
a sensible approximation for the function f? To be precise, given a tolerance �:
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Meaning that all triangles inside an ellipse of (� �2)2 times the area of a Steiner
circumellipse are needed. Meaning that half the size of the mesh around a point
where the function value is to be evaluated must be of order (� �2). For an
error � = 10�9 the numerical values are:

� =

p
2 ln(2=�)

�
� 2:08323609622477 and � �2 � 13:6341119801350

Therefore we choose the layout of the �nite element mesh employed as follows.
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That is: 27� 27 rectangles with two triangles for each rectangle.
A patch test con�rms that the theory works in practice. Unzip and run 'Project5.exe'
(then search Any key and press it) and convince yourself:

http://hdebruijn.soo.dto.tudelft.nl/jaar2011/steiners.zip

The patch test con�rms that a Gauss-Steiner Continuization is found indeed for
the constant function f(x; y) = 1:

Outcome must be 1 = 9.99999999999998E-0001

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)
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