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Observing a function in physics can be modelled by a convolution integral of
this function with e.g. a rectangular distribution. Since basically everything in
physics is subject to observation, the very nature of any function in physics is
revealed by such a convolution integral. The aim of this paper is to demonstrate
that a singularity of the form 1/r? in three-dimensional space, such as with the
Coulomb field of an electon, is actually non-existent in nature.

Herewith it is assumed that the Electron is an observer of it Self. And, as a
first approximation, the Self of an electron is modelled as a little green solid
sphere. Epecially mind the green :-) Serious. We certainly would have preferred
a smooth transition from the electron’s inner structure towards outer space,
such as in ”Renormalization of Singularities”:

http://hdebruijn.soo.dto.tudelft.nl/QED/singular.pdf
But Gaussian distributions can only be done numerically, while the solid sphere

approximation makes an analytical ("exact”) treatment possible.

Little Solid Sphere Everywhere

Let R be the radius of the little solid sphere, (z,y,z) be spatial (Cartesian)
coordinates and r, 6, ¢ the spherical coordinates equivalent of the latter. Then
the itSelf S of the electron is modelled as:

s( )= N for z?+y?+2? < R? S(r) = N for r<R
Y= 0 for 2?4+y2+22 > R? 710 for r>R

When seen from a great distance, the electron looks like a point charge, i.e.
(ipse est): a delta function. Meaning that:

}BILI'IOS($,Z/, Z) = 5('7;7:[/72)

Which is the reason that Self must be normed:
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The electric field E of the electron is given by Coulomb’s law:
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Where g is the electron’s charge and ¢q is the dielectric constant of the vacuum.
By hypothesis, the electron is everywhere. It appears to be localized, though,
due to the Coulomb field; this will be demonstrated in the sequel. The self
electric field of the electron is the convolution of Self and the common Coulomb

field:
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Introducing spherical coordinates:

& = psin() cos(¢)
1 = psin() sin(¢) where 0<f<wm and 0<¢<2nm
¢ = peos(6)

Because of the expected spherical symmetry of the problem, we only consider

a ray in z direction, which means that z =0,y =0and z = r
then becomes, after some suitable rearrangement:
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Substitution of z = p/R and s = r/R gives:

E(r)= 47:_160 % /0 {In [(z +s)*] —In[(z — s)*] } 2 dx

Divide and conquer one:
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Divide and conquer two:
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One and two must be substracted. And integrated from 0 to 1.
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Consequently, the Self Coulomb field of an electron is:

= qg 3 r\2 1+r/R r
Ery=-1-° Jl1- (7) In i
") = fres TR {[ R } ‘l—r/R 2R
There are a few singularities involved here. The first one is at » = 0 , which is
easiest to calculate if we start from the basics all over.
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The next singularity is where the denominator (1 — r/R) in the logarithm for
r=R , or (1—s)for s=1, becomes zero.
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Because lim,_,o zIn(z) =0 with z = (1 — ) .
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We could have done it by hand, but with MAPLE it goes faster:




> simplify(diff ((1-s"2)*1n((1+s)/(1-s))+2%s,s8));
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From this we see that for s = 1 i.e. = R the function E(r) has a slope that is
negative and infinitely large: E'(R) = —o0 .
The Self Coulomb field of an electron can also be written as follows:
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And with help of the variable z = R/r , which is small for r >> R :
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We could have done it by hand, but with MAPLE it goes much faster:

> series(3/4/ (R~ 2*xx)*((x"2-1)*1n((1+x)/(1-x))+2%*x) ,x,7);
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Thus the standard Coulomb law (red) is valid for small values of x , that is for

large values of r , that is for » >> R . Self Coulomb law is depicted in black;
yellow line at position » = R . See picture:
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At last, we want to calculate the Self Energy U of the electron, as defined
by the formula (V' = space volume):
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We could not have done this by hand, so let’s see what MAPLE says about it:
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> £(x) := ((1-x"2)*1n(abs((1+x)/(1-x)))+2*x) "2;
> int(expand(f(x)),x=0..infinity);

And the outcome is truly wonderful ..
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Hence the Self Energy of the Electron is, according to this model:
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Therefore the radius of our little green solid sphere is roughly three times the
classical electron radius a :
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Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)



