
Numerical Method for 3D Ideal Flow

Author: Han de Bruijn
Dated: 2010 April

The two dimensional analogue of an octahedron is a parallelogram. However,
the obvious generalization of a parallelogram, being a quadrilateral, seems to
be a hexahedron. This explains why it has lasted so long - six years - before I
found a generalization of 2D ideal 
ow to three dimensions. A Least Squares
Finite Element Method for two dimensional incompressible and irrotational (i.e
ideal) 
ow has been described, as "Labruj�ere’s Problem", at:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/nlrlsfem.pdf

This document is one of the absolute prerequisites for the 3D study below.
Summary. We start with the algebraic description of a parent hexahedron
(cube). This well known Finite Element is to be employed later on as a 
exible
building block (brick) in 3D meshes. Next we describe the well known Finite
Di�erence seven node star = parent F.E. octahedron. The equations for Ideal
Flow are discretized at octahedrons inside hexahedrons. Source code and results
of a Patch Test are included.

Parent Hexahedron

The hexahedron is a Finite Element which is de�ned in its parent (i.e. normed)
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coordinates (ξ, η, ζ) as a shape with eight nodes:

(0) = (−1,−1,−1) = (ξ0, η0, ζ0)
(1) = (+1,−1,−1) = (ξ1, η1, ζ1)
(2) = (−1,+1,−1) = (ξ2, η2, ζ2)
(3) = (+1,+1,−1) = (ξ3, η3, ζ3)
(4) = (−1,−1,+1) = (ξ4, η4, ζ4)
(5) = (+1,−1,+1) = (ξ5, η5, ζ5)
(6) = (−1,+1,+1) = (ξ6, η6, ζ6)
(7) = (+1,+1,+1) = (ξ7, η7, ζ7)

Template for above picture copied without permission from:

http://www.metafysica.nl/turing/hexaedra_regularia_a.gif

Why this numbering? Answer: because it’s systematical. And therefore it can
be generalized easily to multiple dimensions. Just replace −1 by 0 and leave
+1 = 1 unchanged everywhere. Then reverse the bits. Et voil�a: what we have
is the binary representation of our numbering 0 . . . 7. When formulated in a well
known programming language, it sounds as follows:

function nr(i,j,k : integer) : integer; { F.E. node numbering }
begin
nr := ((k+1) div 2)*4 + ((j+1) div 2)*2 + ((i+1) div 2) * 1;

end;

With a Finite Element Method, eight so-called shape functions Nm(ξ, η, ζ)
should be de�ned, in such way that:{

Nm(ξk, ηk, ζk) = 1 for k = m
Nm(ξk, ηk, ζk) = 0 for k 6= m

Such �nite element shape functions have been found for the one-dimensional and
two-dimensional analogues of the hexahedron: line segment and quadrilateral.
The following 2D study shall be considered as a prerequisite for the 3D case:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/vierhoek.pdf

After absorbing this reference, it shouldn’t be di�cult to make an educated
guess for the shape functions of the hexahedron:

N0(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1− η)
1
2

(1− ζ)

N1(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1− η)
1
2

(1− ζ)

N2(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1 + η)
1
2

(1− ζ)
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N3(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1 + η)
1
2

(1− ζ)

N4(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1− η)
1
2

(1 + ζ)

N5(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1− η)
1
2

(1 + ζ)

N6(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1 + η)
1
2

(1 + ζ)

N7(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1 + η)
1
2

(1 + ζ)

As employed in:

f = N0f0 +N1f1 +N2f2 +N3f3 +N4f4 +N5f5 +N6f6 +N7f7

Instead we can collect terms belonging to (1, ξ, η, ζ, ξη, ξζ, ηζ, ξηζ). It involves
a bit of work, but then you have some:

f(ξ, η, ζ) =
1
8

(+f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7)

+
1
8

(−f0 + f1 − f2 + f3 − f4 + f5 − f6 + f7) ξ

+
1
8

(−f0 − f1 + f2 + f3 − f4 − f5 + f6 + f7) η

+
1
8

(−f0 − f1 − f2 − f3 + f4 + f5 + f6 + f7) ζ

+
1
8

(+f0 − f1 − f2 + f3 + f4 − f5 − f6 + f7) ξη

+
1
8

(+f0 − f1 + f2 − f3 − f4 + f5 − f6 + f7) ξζ

+
1
8

(+f0 + f1 − f2 − f3 − f4 − f5 + f6 + f7) ηζ

+
1
8

(−f0 + f1 + f2 − f3 + f4 − f5 − f6 + f7) ξηζ

The truncated Taylor Series expansion of f(ξ, η, ζ) is:

f(ξ, η, ζ) = f(0, 0, 0)

+
∂f

∂ξ
(0, 0, 0) ξ +

∂f

∂η
(0, 0, 0) η +

∂f

∂ζ
(0, 0, 0) ζ

+
∂2f

∂ξ∂η
(0, 0, 0) ξη +

∂2f

∂ξ∂ζ
(0, 0, 0) ξζ +

∂2f

∂η∂ζ
(0, 0, 0) ηζ

+
∂3f

∂ξ∂η∂ζ
(0, 0, 0) ξηζ

From which we conclude that (normed, central) Finite Di�erence Schemes for
the hexahedron are given by:

f(0, 0, 0) =
1
8

(+f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7)
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∂f

∂ξ
(0, 0, 0) =

1
8

(−f0 + f1 − f2 + f3 − f4 + f5 − f6 + f7)

∂f

∂η
(0, 0, 0) =

1
8

(−f0 − f1 + f2 + f3 − f4 − f5 + f6 + f7)

∂f

∂ζ
(0, 0, 0) =

1
8

(−f0 − f1 − f2 − f3 + f4 + f5 + f6 + f7)

∂2f

∂ξ∂η
(0, 0, 0) =

1
8

(+f0 − f1 − f2 + f3 + f4 − f5 − f6 + f7)

∂2f

∂ξ∂ζ
(0, 0, 0) =

1
8

(+f0 − f1 + f2 − f3 − f4 + f5 − f6 + f7)

∂2f

∂η∂ζ
(0, 0, 0) =

1
8

(+f0 + f1 − f2 − f3 − f4 − f5 + f6 + f7)

∂3f

∂ξ∂η∂ζ
(0, 0, 0) =

1
8

(−f0 + f1 + f2 − f3 + f4 − f5 − f6 + f7)

The above can be written in matrix form, as follows. Let:

f(ξ, η, ζ) = a0 + a1 ξ + a2 η + a3 ζ + a4 ξη + a5 ξζ + a6 ηζ + a7 ξηζ

Then ak are the (normed, central) Finite Di�erence schemes:

a0

a1

a2

a3

a4

a5

a6

a7


=

1
8



+1 +1 +1 +1 +1 +1 +1 +1
−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1 +1 +1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
−1 +1 +1 −1 +1 −1 −1 +1





f0

f1

f2

f3

f4

f5

f6

f7


It is noted that all of the columns are mutually orthogonal. The inverse of an
orthogonal matrix is the transpose of the same matrix, apart from a constant.
This constant is the inverse of the length of (one of) the column vectors, which
in our case is 8. Consequently:

f0

f1

f2

f3

f4

f5

f6

f7


=



+1 −1 −1 −1 +1 +1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 +1 −1 +1 −1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 −1 +1 −1 +1 −1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 +1 +1 +1 +1 +1 +1 +1





a0

a1

a2

a3

a4

a5

a6

a7


So the nodal values of the �nite element shape functions can be expressed in
the normed, central �nite di�erence schemes and also the other way around.
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Parent Octahedron

The octahedron is a Finite Di�erence molecule which is de�ned in its parent
(i.e. normed) coordinates (ξ, η, ζ) as a F.D. star with seven nodes:

(0) = (0, 0, 0) (1) = (−1, 0, 0) (2) = (+1, 0, 0)
(3) = (0,−1, 0) (4) = (0,+1, 0)
(5) = (0, 0,−1) (6) = (0, 0,+1)

Templates for above pictures copied without permission from:

http://en.wikipedia.org/wiki/File:Octahedron.svg
http://en.wikipedia.org/wiki/File:Octahedral-3D-balls.png

The (central, normed) Finite Di�erence schemes associated with the seven node
star are well known:

f(0, 0, 0) = f0
∂f

∂ξ
(0, 0, 0) =

f2 − f1

2
∂2f

∂ξ2
(0, 0, 0) = f2 − 2f0 + f1

∂f

∂η
(0, 0, 0) =

f4 − f3

2
∂2f

∂η2
(0, 0, 0) = f4 − 2f0 + f3

∂f

∂ζ
(0, 0, 0) =

f6 − f5

2
∂2f

∂ζ2
(0, 0, 0) = f6 − 2f0 + f5

The Finite Di�erence interpolation of a function f(ξ, η, ζ) at the molecule is
given by the �rst few terms of a Taylor series expansion:

f(ξ, η, ζ) = f(0, 0, 0) +
∂f

∂ξ
(0, 0, 0)ξ +

∂2f

∂ξ2
(0, 0, 0)

1
2
ξ2

+
∂f

∂η
(0, 0, 0)η +

∂2f

∂η2
(0, 0, 0)

1
2
η2

+
∂f

∂ζ
(0, 0, 0)ζ +

∂2f

∂ζ2
(0, 0, 0)

1
2
ζ2
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Herefrom we easily �nd (F.D. representation):

f(ξ, η, ζ) = f0 +
f2 − f1

2
ξ + (f2 − 2f0 + f1)

1
2
ξ2

+
f4 − f3

2
η + (f4 − 2f0 + f3)

1
2
η2

+
f6 − f5

2
ζ + (f6 − 2f0 + f5)

1
2
ζ2

It is much less well known that Finite Element shape functions hence emerge as
coe�cients of the function values at the nodes. This is derived from the F.D.
representation by collecting terms in a slightly di�erent way:

f(ξ, η, ζ) = (1− ξ2 − η2 − ζ2) f0

+ (−1
2
ξ +

1
2
ξ2) f1 + (+

1
2
ξ +

1
2
ξ2) f2

+ (−1
2
η +

1
2
η2) f3 + (+

1
2
η +

1
2
η2) f4

+ (−1
2
ζ +

1
2
ζ2) f5 + (+

1
2
ζ +

1
2
ζ2) f6

Therefore the F.E. shape functions of the seven node molecule are found to be:

N0(ξ, η, ζ) = 1− ξ2 − η2 − ζ2

N1(ξ, η, ζ) = −1
2
ξ +

1
2
ξ2 N2(ξ, η, ζ) = +

1
2
ξ +

1
2
ξ2

N3(ξ, η, ζ) = −1
2
η +

1
2
η2 N4(ξ, η, ζ) = +

1
2
η +

1
2
η2

N5(ξ, η, ζ) = −1
2
ζ +

1
2
ζ2 N6(ξ, η, ζ) = +

1
2
ζ +

1
2
ζ2

The octahedron, or seven node star, as well as its 2D analogue, or �ve node
star, they both have been around in my work for quite some time:

http://hdebruijn.soo.dto.tudelft.nl/www/article/SUNA04.NET
http://hdebruijn.soo.dto.tudelft.nl/www/article/SUNA10.NET
http://hdebruijn.soo.dto.tudelft.nl/www/article/SUNA48.NET
http://hdebruijn.soo.dto.tudelft.nl/jaar2006/zevenpunt.jpg
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Dual Core Element

Template for above picture copied without permission from:

http://en.wikipedia.org/wiki/File:Dual_Cube-Octahedron.svg
http://en.wikipedia.org/wiki/Octahedron

It’s a well known fact that the octahedron is the dual polyhedron of the cube:
see the wikipedia page for con�rmation of this statement. In much the same
way it can be said that the Finite Di�erence like octahedron is the dual element
of the Finite Element like (unit) hexahedron (cube). The two previous sections
are related to each other in this way. And it is entirely in concordance with the
good old Manifesto:

http://hdebruijn.soo.dto.tudelft.nl/www/programs/suna01.htm
http://hdebruijn.soo.dto.tudelft.nl/www/sunall.htm

It’s a well established habit to use hexahedrons as the basic building blocks
(bricks) in a three dimensional �nite element mesh. Hexahedrons with arbitrary
shape are derived from the unit cube by employing a so called isoparametric
transformation. Let’s repeat the shape functions of the hexahedron in the �rst
place:

Nh0(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1− η)
1
2

(1− ζ)

Nh1(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1− η)
1
2

(1− ζ)

Nh2(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1 + η)
1
2

(1− ζ)
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Nh3(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1 + η)
1
2

(1− ζ)

Nh4(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1− η)
1
2

(1 + ζ)

Nh5(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1− η)
1
2

(1 + ζ)

Nh6(ξ, η, ζ) =
1
2

(1− ξ)1
2

(1 + η)
1
2

(1 + ζ)

Nh7(ξ, η, ζ) =
1
2

(1 + ξ)
1
2

(1 + η)
1
2

(1 + ζ)

f = Nh0fh0 +Nh1fh1 +Nh2fh2 +Nh3fh3 +Nh4fh4 +Nh5fh5 +Nh6fh6 +Nh7fh7

Here the subscript h denotes that these (shape) functions belong to a hexahedron.
An isoparametric transformation of the coordinates, i.e. (ξ, η, ζ) → (x, y, z) ,
is de�ned in exactly the same way as with any other function at the element
(hence the name "isoparametric" = with the same parameters):

x = Nh0xh0 +Nh1xh1 +Nh2xh2 +Nh3xh3 +Nh4xh4 +Nh5xh5 +Nh6xh6 +Nh7xh7

y = Nh0yh0 +Nh1yh1 +Nh2yh2 +Nh3yh3 +Nh4yh4 +Nh5yh5 +Nh6yh6 +Nh7yh7

z = Nh0zh0 +Nh1zh1 +Nh2zh2 +Nh3zh3 +Nh4zh4 +Nh5zh5 +Nh6zh6 +Nh7zh7

This can be summarized in vector notation if we de�ne ~r = (x, y, z):

~r(ξ, η, ζ) = Nh0~rh0+Nh1~rh1+Nh2~rh2+Nh3~rh3Nh4~rh4+Nh5~rh5+Nh6~rh6+Nh7~rh7

Let’s take a look now at the dual element of the general hexahedron, the parent
of which is our unit octahedron. The places of the nodes of the unit octahedron
inside the unit hexahedron are at:

(ξo0, ηo0, ζo0) = (0, 0, 0)
(ξo1, ηo1, ζo1) = (−1, 0, 0)
(ξo2, ηo2, ζo2) = (+1, 0, 0)
(ξo3, ηo3, ζo3) = (0,−1, 0)
(ξo4, ηo4, ζo4) = (0,+1, 0)
(ξo5, ηo5, ζo5) = (0, 0,−1)
(ξo6, ηo6, ζo6) = (0, 0,+1)

Here the subscript o denotes that the unit coordinates belong to an octahedron.
And, in case you didn’t notice, this is a staggered grid with respect to the
hexahedron’s nodes. Then we �nd (the trick is to remember that hexahedron
numbering reads as coordinates in bits):

~r(0, 0, 0) =
1
8

(~rh0 + ~rh1 + ~rh2 + ~rh3 + ~rh4 + ~rh5 + ~rh6 + ~rh7) = ~ro0

~r(−1, 0, 0) =
1
4

(~rh0 + ~rh2 + ~rh4 + ~rh6) = ~ro1
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~r(+1, 0, 0) =
1
4

(~rh1 + ~rh3 + ~rh5 + ~rh7) = ~ro2

~r(0,−1, 0) =
1
4

(~rh0 + ~rh1 + ~rh4 + ~rh5) = ~ro3

~r(0,+1, 0) =
1
4

(~rh2 + ~rh3 + ~rh6 + ~rh7) = ~ro4

~r(0, 0,−1) =
1
4

(~rh0 + ~rh1 + ~rh2 + ~rh3) = ~ro5

~r(0, 0,+1) =
1
4

(~rh4 + ~rh5 + ~rh6 + ~rh7) = ~ro6

We conclude herefrom that there exists a very simple relationship between the
places of the nodes of the inner octahedron:

~ro0 =
1
2

(~ro1 + ~ro2) =
1
2

(~ro3 + ~ro4) =
1
2

(~ro5 + ~ro6)

The question is if we can we infer the same relationship for any other function
f of the normed coordinates. Of course we can, because we can derive in very
much the same way as for the coordinates that:

f(0, 0, 0) =
1
8

(fh0 + fh1 + fh2 + fh3 + fh4 + fh5 + fh6 + fh7) = fo0

f(−1, 0, 0) =
1
4

(fh0 + fh2 + fh4 + fh6) = fo1

f(+1, 0, 0) =
1
4

(fh1 + fh3 + fh5 + fh7) = fo2

f(0,−1, 0) =
1
4

(fh0 + fh1 + fh4 + fh5) = fo3

f(0,+1, 0) =
1
4

(fh2 + fh3 + fh6 + fh7) = fo4

f(0, 0,−1) =
1
4

(fh0 + fh1 + fh2 + fh3) = fo5

f(0, 0,+1) =
1
4

(fh4 + fh5 + fh6 + fh7) = fo6

Consequently:

fo0 =
1
2

(fo1 + fo2) =
1
2

(fo3 + fo4) =
1
2

(fo5 + fo6)

But wait! Here is the F.D. representation of an arbitrary function interpolated
at the octahedron:

fo(ξ, η, ζ) = fo0 +
fo2 − fo1

2
ξ + (fo2 − 2fo0 + fo1)

1
2
ξ2

+
fo4 − fo3

2
η + (fo4 − 2fo0 + fo3)

1
2
η2

+
fo6 − fo5

2
ζ + (fo6 − 2fo0 + fo5)

1
2
ζ2
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So it turns out that, with the assumption of overall isoparametrics, all of the
quadratic terms in the interpolation at the inner octahedron are cancelled. The
resulting interpolation is linear :

fo(ξ, η, ζ) = fo0 +
fo2 − fo1

2
ξ +

fo4 − fo3
2

η +
fo6 − fo5

2
ζ

However, we can eliminate the odd node numbers, by substitution of:

fo0 =
1
2

(fo1 + fo2) =
1
2

(fo3 + fo4) =
1
2

(fo5 + fo6) =⇒

fo1 = 2fo0 − fo2 and fo3 = 2fo0 − fo4 and fo5 = 2fo0 − fo6
Giving at last:

fo(ξ, η, ζ) = fo0 + (fo2 − fo0) ξ + (fo4 − fo0) η + (fo6 − fo0) ζ

Thus the linear interpolation of an inner octahedron is exactly the same as the
linear interpolation of one of the eight tetrahedrons composing that octahedron:

(0, 4, 2, 5) (0, 1, 4, 5) (0, 3, 1, 5) (0, 2, 3, 5)
(0, 2, 4, 6) (0, 4, 1, 6) (0, 1, 3, 6) (0, 3, 2, 6)

Doesn’t matter which one is taken. Read the section "Linear Tetrahedron" in:

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/belgisch.pdf

Equations for Ideal Flow

For discretization of the equations for Ideal Flow, a dedicated version of the
Least Squares Finite Element Method (L.S.FEM) will be employed. It has been
argued for the two dimensional case that this so called �nite element method is
actually not so much a FEM but rather a Finite Volume Method. This is the
reason why we will start with an integral (not a di�erential) formulation of the
equations governing ideal 
ow.
Consider a Patch Test element, consisting of just one hexahedron together with
its inner octahedron. First we establish the number of unknowns, which is eight
nodes times three velocity components, giving a total of 18. Then it shall be
required that the total number of independent equations is equal to 18 as well.
The �rst equation is the one that de�nes incompressible :∫∫

(~v · ~n) dA = 0

Here ~v is the 
ow velocity vector with components (u, v, w) , ~n is the normal
on the surface A , and the integral is taken over this surface. In our case, the
surface consists of the eight faces of the inner octahedron. Each of these faces
is a triangle. Take one of the triangles, namely the one with vertices (2, 4, 6).

10



Suppose that the interpolation of an arbitrary function f at this triangle is
linear:

f(p, q) = f2 + (f4 − f2) p+ (f6 − f2) q

We know from the end of the preceding subsection:

f(ξ, η, ζ) = f0 + (f2 − f0) ξ + (f4 − f0) η + (f6 − f0) ζ

Here we have dropped the subscript o , because the outer hexahedron is out of
sight at the moment. When comparing this with the triangle formula for f :

f(p, q) = f0 + (f2 − f0)(1− p− q) + (f4 − f0)p+ (f6 − f0)q

We see that, at the triangular surface:

p = η and q = ζ and 1− p− q = ξ =⇒ ξ + η + ζ = 1

So the in�nitesimal area element is (where × denotes outer product):

~n dA = (~r4 − ~r2)× (~r6 − ~r2) dη dζ

And the interpolation for the velocities is:

~v = ~v2 + (~v4 − ~v2)η + (~v6 − ~v2)ζ

Now calculating the integral over that piece of the surface becomes a matter of
routine (i.e. we have done this before):∫∫

(~v · ~n) dA = ((~r4 − ~r2)× (~r6 − ~r2)) ·

[
~v2

∫ 1

0

dζ

∫ 1−ζ

0

dη + (~v4 − ~v2)
∫ 1

0

dζ

∫ 1−ζ

0

η dη + (~v6 − ~v2)
∫ 1

0

ζdζ

∫ 1−ζ

0

dη

]

= ((~r4 − ~r2)× (~r6 − ~r2)) ·
[

1
2
~v2 +

1
6

(~v4 − ~v2) +
1
6

(~v6 − ~v2)
]

=

=
[

1
2

(~r4 − ~r2)× (~r6 − ~r2)
]
· 1

3
[~v2 + ~v4 + ~v6]

The above can also be derived from
∫∫

ξmηn dξ dη = m!n!/(m+ n+ 2)! in:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/simplex.pdf

There are eight of these contributions, they must be summed up all together
and the outcome must be zero. One (1) equation, that’s all there is in this case.
The second integral equation is the one that de�nes irrotational :∮

(~v · d~s) = 0
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It says that the circulation around each of the eight triangular faces is zero.
With e.g. the above triangle, the interpolation at the edges is linear as well. To
be precise:

at (~r4 − ~r2) : ξ + η = 1 and ζ = 0
at (~r6 − ~r4) : η + ζ = 1 and ξ = 0
at (~r2 − ~r6) : ξ + ζ = 1 and η = 0

So the contour integral is discretized as:

((~r4 − ~r2) · 1
2

(~v4 + ~v2)) + ((~r6 − ~r4) · 1
2

(~v6 + ~v4)) + ((~r2 − ~r6) · 1
2

(~v2 + ~v6)) = 0

And in the same way for all eight faces of the inner octahedron. So it seems,
at �rst sight, that we have eight equations here. But only at �rst sight. Taking
a further look at the problem reveals that, due to common edges of the faces,
there are only four (4) independent equations. You can see this by drawing the
arrows of four (non adjacent) circulation patterns and note that all edges then
already have a circulation.
The velocity components are interpolated by isoparametric (ξ, η, ζ) coordinates
and therefore are subject to the same relations that have been established for
any function at the inner octahedron. This is what we have found:

fo0 =
1
2

(fo1 + fo2) =
1
2

(fo3 + fo4) =
1
2

(fo5 + fo6)

Consequently:

~v0 =
1
2

(~v1 + ~v2) =
1
2

(~v3 + ~v4) =
1
2

(~v5 + ~v6)

Here we have dropped the subscript o again, because the outer hexahedron is
out of sight at the moment. Upon eliminating ~v0 we have:

1
2

(~v1 + ~v2) =
1
2

(~v3 + ~v4)

1
2

(~v1 + ~v2) =
1
2

(~v5 + ~v6)

1
2

(~v3 + ~v4) =
1
2

(~v5 + ~v6)

It is clear that, for example, the third of these equations is dependent on the
other two. So e�ectively there are two vector equations times three components
giving six (6) independent equations.
At last we have Boundary Conditions. These consist of impermeable walls at
the nodes (3, 4, 5, 6), a prescribed velocity (three components) at the "inlet"
node (1) and nothing at the "outlet" node (2). Leading to 4 + 3 = seven (7)
independent equations.
So what we have in total is 1 + 4 + 6 + 7 = 18 , which is exactly the number of
unknowns, hence the required number of independent Finite Volume equations.
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Delphi Pascal Source Code

program stroming;
{
Patch Test for Linear Octahedron with
Incompressible and Irrotational Flow
(Ideal Flow) in three dimensions: 3-D

}
Uses Numeriek; { Numerical Toolbox @ website }

type
vektor = record
x,y,z : double;

end;
xyz = (x,y,z); { Enumeration }

const
{ All 6 vertices of the octahedron }
P : array[0..6,0..2] of double =
(( 0, 0, 0) { 0 }
,(-1, 0, 0) { 1 }
,(+1, 0, 0) { 2 }
,( 0,-1, 0) { 3 }
,( 0,+1, 0) { 4 }
,( 0, 0,-1) { 5 }
,( 0, 0,+1) { 6 } );

{ All eight faces of the octahedron }
nr : array[0..7,0..2] of integer =
((2,4,6),(4,1,6),(1,3,6),(3,2,6)
,(4,2,5),(1,4,5),(3,1,5),(2,3,5));

{ Smart numbering does the job, a great deal! }

function no(node : integer; speed : xyz) : integer;
{
Numbering within FEM

}
begin
no := (node-1)*3 + Ord(speed) + 1;

end;

var
FEM : Symmetric_Band_Positive_Incore;

function pijl(one,two : integer) : vektor;
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{
Edge of Octahedron

}
var
v : vektor;

begin
v.x := P[two,0] - P[one,0];
v.y := P[two,1] - P[one,1];
v.z := P[two,2] - P[one,2];
pijl := v;

end;

function uit(a,b : vektor) : vektor;
{
Outer Product

}
var
u : vektor;

begin
u.x := a.y*b.z - a.z*b.y;
u.y := a.z*b.x - a.x*b.z;
u.z := a.x*b.y - a.y*b.x;
uit := u;

end;

procedure Incompressible;
{
Incompressible Flow

}
var
i,j,m : integer;
bij : vektor;

begin
FEM.Schema_nul(18);
for i := 0 to 7 do
begin
{ Triangular Face contribution }
bij := uit(pijl(nr[i,0],nr[i,1])

,pijl(nr[i,0],nr[i,2]));
{ Do the bookkeeping }
for j := 0 to 2 do
begin
m := no(nr[i,j],x); FEM.A[m] := FEM.A[m] + bij.x;
m := no(nr[i,j],y); FEM.A[m] := FEM.A[m] + bij.y;
m := no(nr[i,j],z); FEM.A[m] := FEM.A[m] + bij.z;

end;
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end;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

{ Count = 1 }
end;

procedure Irrotational;
{
Irrotational Flow

}
var
i,j,k,L,m : integer;
bij : vektor;

begin
for i := 0 to 7 do
begin
FEM.Schema_nul(18);
for k := 0 to 2 do
begin
{ Triangle Edges contribution }
L := (k+1) mod 3;
bij := pijl(nr[i,k],nr[i,L]);

{ Do the bookkeeping }
for j := 0 to 1 do
begin
L := (k+j) mod 3;
m := no(nr[i,L],x); FEM.A[m] := FEM.A[m] + bij.x;
m := no(nr[i,L],y); FEM.A[m] := FEM.A[m] + bij.y;
m := no(nr[i,L],z); FEM.A[m] := FEM.A[m] + bij.z;

end;
end;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

{ Count = 8 / 2 = 4 -> 5 }
end;

end;

procedure Boundaries;
{
Boundary Conditions

}
var
m : integer;
yz : xyz;
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begin
{ Prescribed velocity (1,0,0) at (1) }
FEM.Schema_nul(18);
FEM.A[no(1,x)] := 1; FEM.rhs := 1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);
for yz := y to z do
begin
FEM.Schema_nul(18);
FEM.A[no(1,yz)] := 1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

end;
{ Walls in Y direction }
for m := 3 to 4 do
begin
FEM.Schema_nul(18);
FEM.A[no(m,y)] := 1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

end;
{ Walls in Z direction }
for m := 5 to 6 do
begin
FEM.Schema_nul(18);
FEM.A[no(m,z)] := 1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

end;
{ Count = 3 + 4 = 7 -> 12 }
end;

procedure Isoparametrics;
{
Isoparametrics of
Linear Octahedron

}
var
v : xyz;

begin
for v := x to z do
begin
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FEM.Schema_nul(18);
FEM.A[no(1,v)] := +1;
FEM.A[no(2,v)] := +1;
FEM.A[no(3,v)] := -1;
FEM.A[no(4,v)] := -1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

FEM.Schema_nul(18);
FEM.A[no(1,v)] := +1;
FEM.A[no(2,v)] := +1;
FEM.A[no(5,v)] := -1;
FEM.A[no(6,v)] := -1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

FEM.Schema_nul(18);
FEM.A[no(2,v)] := +1;
FEM.A[no(3,v)] := +1;
FEM.A[no(5,v)] := -1;
FEM.A[no(6,v)] := -1;
FEM.Element_nul(18);
FEM.Kleinste_Kwadraten(18,1);
FEM.Intellen(18);

end;
{ Count = (3-1) * 3 = 6 -> 18 }
end;

procedure doen;
{
Patch Test
Do the Job

}
var
k : integer;

begin
{ Initialize }
FEM.nn := 18;
FEM.nb1 := 18;
FEM.Globaal_nul;
for k := 1 to 18 do
FEM.nr[k] := k;

{ All Equations }
Incompressible;
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Irrotational;
Isoparametrics;
Boundaries;

{ Solution }
FEM.Oplossen(’flowin3D.txt’);

end;

procedure test;
{
Just a test

}
var
k : integer;

begin
for k := 1 to 6 do
begin
Writeln(no(k,x));
Writeln(no(k,y));
Writeln(no(k,z));

end;
end;

begin
doen;

end.

Results of Patch Test

The results are ordered as

u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4 u5 v5 w5 u6 v6 w6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Where (uk, vk, wk) are 
ow velocity components at node (k) of the octahedron.

1 1.00000000000000E+0000
2 4.56485884640815E-0017
3 -7.53265120626704E-0018
4 1.00000000000000E+0000
5 6.12595591043916E-0017
6 -5.30319498511005E-0018
7 1.00000000000000E+0000
8 1.39043050177858E-0016
9 -1.93468035350552E-0017
10 1.00000000000000E+0000
11 -1.01886958795359E-0016
12 1.85589355162947E-0017
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13 1.00000000000000E+0000
14 5.28281767444885E-0017
15 5.23664259526328E-0017
16 1.00000000000000E+0000
17 9.86155590864014E-0017
18 -6.37942359686740E-0017

It is seen that the prescribed velocity (u1, v1, w1) = (1, 0, 0) at the entrance is
copied everywhere in the 
ow �eld, as it should be.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
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