
Conic Sections

Author: Han de Bruijn
Dated: 2006 September, 2010 April

The theory of Conic Sections stems from ancient times. It is an example of
pure mathematics, which has found applications only many centuries after it
has been developed: with the laws of planet motion as discovered by Johannes
Keppler. But, quite interesting as it is, we shall leave aside history and come to
core - or rather cone - business almost immediately.

Analysis

The problem is to intersect a circular cone with a plane and determine the
curves of intersection, like shown in the above figure. This could be done in the
way the old Greek mathematicians did it. But we prefer to drive along a road
that requires less ingenuity and we will employ the means of modern analytical
geometry instead.
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A circular cone is characterized by the fact that the angle φ between the cone
axis and its surface is a constant. Let the unit vector ~a be the direction of the
cone axis and let ~p point to the top vertex of the cone. An arbitrary point at
the surface of the cone is pinpointed by ~r. Then the following is an equation of
the cone surface:

(~a · ~r − ~p) = |~a||~r − ~p| cos(φ)

Square both sides:

(~a · ~r − ~p)2 = (~a · ~a)(~r − ~p · ~r − ~p) cos2(φ)

And work out:

(~a · ~r)2 − 2(~a · ~p)(~a · ~r) + (~a · ~p)2 = cos2(φ) {(~r · ~r)− 2(~p · ~r) + (~p · ~p)}

The unit vector ~a can be written as:

~a = [cos(α) cos(γ), cos(α) sin(γ), sin(α)]

Where α is the angle between the cone axis and the XY-plane and γ is an angle
that indicates how the conic section is rotated in the plane. The vector of the
top of the cone can be written in its coordinates as:

~p = (p, q, h)

Where h is the height of the cone above the XY plane and (p, q) indicates
how the conic section is translated in the plane. Last but not least, the vector
pointing to the cone surface is written as:

~r = (x, y, z)

Where the intersections with the XY plane are found for z = 0. Let’s do just
that and work out the above:

(~a · ~r) = cos(α) cos(γ)x+ cos(α) sin(γ) y
(~a · ~p) = cos(α) cos(γ) p+ cos(α) sin(γ) q + sin(α)h
(~r · ~r) = x2 + y2

(~p · ~r) = p x+ q y

(~p · ~p) = p2 + q2 + h2

Resulting in:
[cos(α) cos(γ)x+ cos(α) sin(γ) y]2

−2(~a · ~p) [cos(α) cos(γ)x+ cos(α) sin(γ) y]

+(~a · ~p)2 = cos2(φ)
{
x2 + y2 − 2(p x+ q y) + (~p · ~p)

}
Collecting powers of x and y results in:

Ax2 +B xy + C y2 +Dx+ E y + F = 0
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Where:

A = cos2(φ)− cos2(α) cos2(γ)
B = −2 cos2(α) cos(γ) sin(γ)
C = cos2(φ)− cos2(α) sin2(γ)
D = 2

{
cos(α) cos(γ)(~a · ~p)− cos2(φ) p

}
E = 2

{
cos(α) sin(γ)(~a · ~p)− cos2(φ) q

}
F = (~p · ~p) cos2(φ)− (~a · ~p)2

Here:

D = 2
{

cos(α) cos(γ) [cos(α) cos(γ) p+ cos(α) sin(γ) q + sin(α)h]− cos2(φ) p
}

=

2
[
cos2(α) cos2(γ)− cos2(φ)

]
p+2 cos2(α) cos(γ) sin(γ) q+2 cos(α) sin(α) cos(γ)h

=⇒ D = −2Ap−B q + sin(2α) cos(γ)h

And:

E = 2
{

cos(α) sin(γ) [cos(α) cos(γ) p+ cos(α) sin(γ) q + sin(α)h]− cos2(φ) q
}

=

2 cos2(α) cos(γ) sin(γ) p+2
[
cos2(α) sin2(γ)− cos2(φ)

]
q+2 cos(α) sin(α) sin(γ)h

=⇒ E = −B p− 2C q + sin(2α) sin(γ)h

Last but not least:

F = (p2 + q2 + h2) cos2(φ)− [cos(α) cos(γ) p+ cos(α) sin(γ) q + sin(α)h]2

= p2
[
cos2(φ)− cos2(α) cos2(γ)

]
+ q2

[
cos2(φ)− cos2(α) sin2(γ)

]
+p [−2 cos(α) sin(α) cos(γ) h] + q [−2 cos(α) sin(α) sin(γ) h]

+pq
[
−2 cos2(α) cos(γ) sin(γ)

]
+ h2

[
cos2(φ)− sin2(α)

]
=⇒

F = Ap2 +Bpq + Cq2 − h sin(2α) cos(γ)p− h sin(2α) sin(γ)q

+h2
[
cos2(φ)− sin2(α)

]
With help of the expressions for D and E:

F = Ap2 +Bpq + Cq2 − (D + 2Ap+Bq)p− (E +Bp+ 2Cq)q

+h2
[
cos2(φ)− sin2(α)

]
=⇒

F = h2
[
cos2(φ)− sin2(α)

]
− (Ap2 +Bpq + Cq2 +Dp+ Eq)

=⇒ Ap2 +Bpq + Cq2 +Dp+ Eq + F = h2
[
cos2(φ)− sin2(α)

]
Many other expressions can be derived. But not all of them appear to be equally
interesting.
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Meaning

The first three coefficients of the conic section equation are:

A = cos2(φ)− cos2(α) cos2(γ)
B = −2 cos2(α) cos(γ) sin(γ)
C = cos2(φ)− cos2(α) sin2(γ)

All kind of conics can still be produced if the angles φ and α are limited to
sensible values:

0 < φ < 90o =⇒ 0 < cos(φ) < 1
0 ≤ α ≤ 90o =⇒ 0 ≤ cos(α) ≤ 1

Generality is not affected by these choices. Moreover it is seen from the sole
picture in this document that the form of the conic section is determined by the
angles φ and α and nothing else. Therefore the ratio of the two angles will be
defined here - somewhere else ? - as the excentricity (ε) of the conic section:

ε =
cos(α)
cos(φ)

The following relationships exist between the excentricity and the form of a
conic section, as is clear from the figure:

Circle : α = 90o ⇐⇒ ε = 0
Ellipse : α > φ ⇐⇒ ε < 1

Parabola : α = φ ⇐⇒ ε = 1
Hyperbola : α < φ ⇐⇒ ε > 1

Where it is noted that the circle can be considered as a special case of an ellipse.
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So far so good. The coefficients (A,B,C) can be combined into some interesting
quantities which are only dependent upon form, that is: the angles φ and α.
It is remarked in the first place that (A,B,C) are independent of the vector
~p = (p, q, h) and thus independent of translation and scaling. If we seek to
eliminate any dependence upon the angle of rotation γ, then we find:

A+ C = 2 cos2(φ)− cos2(α) = cos2(φ)(2− ε2)

This quantity is known (for some good reasons) as the trace of the conic section.
Instead of eliminating the angle of rotation, we could also try to calculate it.

A− C = − cos2(α)
[
cos2(γ)− sin2(γ)

]
= − cos2(α) cos(2γ)

There is a striking resemblance with:

B = − cos2(α) sin(2γ)

We thus find:

B

A− C
=

sin(2γ)
cos(2γ)

=⇒ tan 2γ =
B

A− C

Herewith - in principle - the angle of rotation γ can be reconstructed from the
conic section equation; provided that A 6= C.
Let’s proceed with another quantity that is independent of any rotation.

B2 − 4AC =
[
−2 cos2(α) cos(γ) sin(γ)

]2
−4
[
cos2(φ)− cos2(α) cos2(γ)

] [
cos2(φ)− cos2(α) sin2(γ)

]
This quantity is known (also for some good reasons) as the determinant or
discriminant of the conic section. Work out:

= 4 cos4(α) cos2(γ) sin2(γ)− 4 cos4(φ)− 4 cos4(α) cos2(γ) sin2(γ)

+4 cos2(φ) cos2(α)
[
cos2(γ) + sin2(γ)

]
= −4 cos4(φ) + 4 cos2(φ) cos2(α)

=⇒ B2 − 4AC = 4 cos2(φ)
[
cos2(α)− cos2(φ)

]
=
[
2 cos2(φ)

]2
(ε2 − 1)

The following relationships exist between the discriminant and the form of a
conic section, as is clear from the above:

Ellipse ⇐⇒ ε < 1 ⇐⇒ (B2 − 4AC) < 0
Parabola ⇐⇒ ε = 1 ⇐⇒ (B2 − 4AC) = 0

Hyperbola ⇐⇒ ε > 1 ⇐⇒ (B2 − 4AC) > 0

So far so good. On the other hand:

(A+ C)2 = 4 cos2(φ)
[
cos2(φ)− cos2(α)

]
+ cos4(α)
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Upon addition this gives:

(B2 − 4AC) + (A+ C)2 = cos4(α) =⇒

cos(α) =
√√

B2 + (A− C)2

About the angle φ between the cone axis and its surface:

A+ C = 2 cos2(φ)−
√
B2 + (A− C)2 =⇒

cos(φ) =

√
(A+ C) +

√
B2 + (A− C)2

2

Herewith the excentricity ε can be expressed into the coefficients of the conic
section equation (A,B,C):

ε =

√
2
√
B2 + (A− C)2

(A+ C) +
√
B2 + (A− C)2

Specialization

There is a special case which must be studied before the other special cases can
be studied. It is the conic section called parabola. A parabola is characterized
by the fact that its excentricity is one, which is equivalent to the fact that its
discriminant is zero:

ε = 1 ⇐⇒ (B2 − 4AC) = 0 ⇐⇒ B = ±2
√
AC

The general equation of a conic section has been found to be:

Ax2 +B xy + C y2 +Dx+ E y + F = 0

Upon substitution this becomes the general equation of a parabola:

Ax2 ± 2
√
AC xy + C y2 +Dx+ E y + F = 0

⇐⇒ (
√
Ax±

√
C y)2 +Dx+ E y + F = 0

Where it follows from ε = 1 that cos(φ) = cos(α). Giving:

A = cos2(φ)− cos2(α) cos2(γ) = cos2(φ)
[
1− cos2(γ)

]
= cos2(φ) sin2(γ)

=⇒
√
A = cos(φ) sin(γ)

C = cos2(φ)− cos2(α) sin2(γ) = cos2(φ)
[
1− sin2(γ)

]
= cos2(φ) cos2(γ)

=⇒
√
C = cos(φ) cos(γ)
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Special choices for γ are γ = 0o or γ = 90o. Resulting in
√
A = 0 or

√
C = 0

respectively. The second case leads us to the most common (standard) equation
of the parabola. Assuming that E 6= 0 and a = A/E, b = D/E, c = F/E:

Ax2 +Dx+ E y + F = 0 or y = a x2 + b x+ c

General expressions for D and E are:

D = −2Ap−B q + sin(2α) cos(γ)h
E = −B p− 2C q + sin(2α) sin(γ)h

Most of the time, it is possible to reformulate the conic section equation as a
so-called midpoint equation, that is: in a coordinate system where D = E = 0.
In order to accomplish this, we must solve the following equations for (p, q):

2Ap+B q = sin(2α) cos(γ)h
B p+ 2C q = sin(2α) sin(γ)h

Two linear equations with two unknowns. This small system has a solution if
its determinant (B2 − 4AC) is just non-zero. But hey ! Now we understand
where the word ”determinant” comes from. And it’s also clear now why the
parabolic case is a logical first choice. Because, apparently, a midpoint equation
cannot be found if the conic section is a parabola. But for all other cases, it
should work. Thus we have, for B2 − 4AC 6= 0, the following general midpoint
equation for a conic section:

Ax2 +B xy + C y2 + F = 0

Before proceeding, we have discovered that, apart from the determinant, there
exists another rotation angle independent quantity. It is the trace:

A+ C = 2 cos2(φ)− cos2(α) = cos2(φ)(2− ε2)

The trace is apparently zero for ε =
√

2, hence for cos2(α) = 2 cos2(φ). So this
must be a kind of hyperbola, with main coefficients:

A = cos2(φ)− 2 cos2(φ) cos2(γ) = − cos2(φ) cos(2γ)
B = −4 cos2(φ) cos(γ) sin(γ) = −2 cos2(φ) sin(2γ)
C = cos2(φ)− 2 cos2(φ) sin2(γ) = + cos2(φ) cos(2γ)

The coefficients A and C are zero for γ = 45o while the coefficient B is zero for
γ = 0o or γ = 90o. Thus the midpoint equation for that hyperbola assumes two
possible special forms:

B xy + F = 0 =⇒ xy = c where c = F/B

Ax2 −Ay2 + F = 0 =⇒ x2 − y2 = c where c = F/A
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In both cases, the result is known as an othogonal hyperbola.
Let’s proceed now with the rest of the conic sections, known as hyperbolas and
ellipses. Their midpoint equation is, again:

Ax2 +B xy + C y2 + F = 0

This equation can be simplified further by assuming that the rotation angle is
either γ = 0o or γ = 90o in:

B = −2 cos2(α) cos(γ) sin(γ) = 0

Resulting in the so-called (almost) standard form for ellipses and hyperbolas:

Ax2 + C y2 + F = 0

Where, for ellipses:

B2 − 4AC < 0 =⇒ (A > 0 and C > 0) or (A > 0 and C > 0)

And, for hyperbolas:

B2 − 4AC > 0 =⇒ (A > 0 and C < 0) or (A < 0 and C > 0)

For ellipses, if we put A/F = −1/a2 and C/F = −1/b2 a very much standard
equation is the result: (x

a

)2

+
(y
b

)2

= 1

We are curious of what has become of our excentricity, for ellipses only:

ε =

√
2
√
B2 + (A− C)2

(A+ C) +
√
B2 + (A− C)2

Assuming that a > b, it follows that:

ε =

√
2(1/b2 − 1/a2)

(1/a2 + 1/b2) + (1/b2 − 1/a2)
=⇒ ε =

√
1− b2

a2

Which is, indeed, much more like a well-known expression for the excentricity
of an ellipse.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
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