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After having �nished the Uniform Combs of Gaussians project, uniform combs
of other hat functions will be investigated. We start with a general approach,
followed by kind of heuristics. Then we specialize for respectively the Cauchy
distribution, triangle, rectangle, exponential decay, sinc function and other band
limited hat functions. The latter will lead us, through the Nyquist - Shannon
sampling theorem, towards the more General Theory of Continuity. Later.

Uniform Combs of Hat functions

The subject of our current study are uniform combs P (x) of normed hat shaped
curves / functions p(x) . Such combs are de�ned as:

P (x) =

+1X
L=�1

p(x� L:�)�

Where � is the discretization interval length and where being normed means
that: Z +1

�1

p(x) dx = 1

In addition, all hat functions are assumed to be symmetrical around x = 0:

p(�x) = p(x)

Given a su�cient re�nement of the discretization � - to be de�ned later - the
comb P (x) can be interpreted as a Riemann sum, approximating the following
integral, with �! d� . This explains the factor � in the above de�nition.

lim
�!0

P (x) =

Z +1

�1

p(x� �) d� = 1

The function P (x) can be interpreted as an attempt to "smooth" the uniform
density xL = L:� . Or "make fuzzy" the discretization f(xL) = 1 of a constant
- and continuous - function f(x) = 1 . This could be called the Special Theory
of Continuity.
It is easily shown that the above function P (x) is periodic. Its period is equal
to �: P (x +�) = P (x) for arbitrary x. Meaning that P (x) can be developed
into a Fourier series. The Fourier series of any periodic function is given by:

P (x) =
1

2
a0 +

1X
k=1

ak cos(k!x)
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But, in addition, the function is even, meaning that P (x) = P (�x), which
results in real-valued Fourier coe�cients ak :

ak =
1

�=2

Z +�=2

��=2

P (x) cos(k 2�=�x) dx

In the sequel, kind of an angular frequency ! will stand for the quantity = 2�=�.
Then let the calculations continue:

=
1

�=2

Z +�=2

��=2

+1X
L=�1

p(x� L�)�cos(k!x) dx

= 2�
+1X

L=�1

Z +�=2

��=2

p(x� L�) cos(k!x) dx

Substitute y = x� L� and integrate to y:

ak=2 =

+1X
L=�1

Z +�=2�L�

��=2�L�

p(y) cos(k![y + L�]) dy

Where:
cos(k![y + L�]) = cos(k!y + k:L:2�) = cos(k!y)

Next replace y by �y and switch integration bounds:

ak=2 =

+1X
L=�1

Z L�+�=2

L���=2

p(y) cos(k!y) dy

The above integrals are precisely the adjacent pieces of another integral which
has bounds reaching to in�nity. That is, they sum up to an in�nite integral:

ak=2 =

Z +1

�1

p(y) cos(k!y) dy

Now the (continuous) Fourier integral of p(x) is de�ned by:

A(y) =

Z +1

�1

p(x) cos(xy) dx

Wherefrom it is concluded that the (discrete) coe�cients of the Fourier series
are a sampling of the (continuous) Fourier integral:

ak=2 = A(k!)

And especially:

a0=2 = A(0) =

Z +1

�1

p(x) dx =) 1

2
a0 = 1
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Therefore the general expression for the Fourier series of a uniform comb of hat
functions is:

P (x) = 1 + 2�
1X
k=1

A(k!) cos(k!x)

Where it is reminded that ! = 2�=� . And:

A(y) =

Z +1

�1

p(x) cos(xy) dx

It is seen herefrom that P (x) , indeed, is an approximation of the constant
function f(x) = 1 , provided that the rest of the Fourier series is just a minor
correction on this value. At hand of a few sample hat functions p(x) , we will
investigate if such is the rule or rather an exception.

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/document.pdf

In the article Uniform Combs of Gaussians we have already encountered an
outstanding example of Uniform Combs of Hat functions. When cast in the
standard form, as de�ned above, it reads:

+1X
L=�1

�

�
p
2�

e�
1

2
(x�L�)2=�2 = 1 + 2�

1X
k=1

e�
1

2
(k!�)2 cos(k!x)

Fuzzy Optics

Sometimes you can see things better with your eyes half shut. Maybe there is
no more lucid way than this for expressing the idea of continuity. In the physics
lessons at school, a little piece of geometric optics has always been part of the
program: convex and concave mirrors and lenses. Herewith it is assumed, quite
naturally, that any image of an object is crisp and clear. My proposal here is
to say goodbye to this good habit, and pay attention to fuzzy images instead.
In the �gure below, much enlarged, we see the geometry of such a fuzzy image:

3



Usually, a crisp image is formed at the spot F . However, now suppose that the
image plane is shifted a little bit to the right, over a distance d . Consider a
very narrow light bundle FBC. The bundle fans out slowly and hits the image
plane at BC. Because the bundle is very narrow, both the angles FBD and
FDB are approximately 90 degrees. This means that the angle CBD will be
approximately equal to the angle BFA. Name this angle �. The light density
P at the surface BC shall be calculated. Assume that the light is emitted by
a point source with strength 1, then: P = cos(�)=(2�R2) (: half sphere). Here
cos(�) = d=R and R =

p
r2 + d2. If the surface BC is contracted to a point,

then we �nd for the light strength in place the following "exact" expression:

P (r) =
d=(2�)

(r2 + d2)3=2

It is noted that the derivation with help of the approximately straight angles
FBD and FDB is motivated only afterwards, as the limit "has been taken".
This is a typical example of a "derivation with pain", as it is applied quite
frequently in the applied sciences / physics.
A few things are noted. At �rst that a crisp image is obtained (a delta function

to be precise) as soon as the distance d approaches zero. Integration of the
formula over the whole image plane obviously must yield a total amount of light
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equal to 1 . This can be checked out:ZZ
d=2�

(r2 + d2)3=2
r:dr:d� = 2�:

1

2�
:

Z 1

0

r=d:d(r=d)

[(r=d)2 + 1]
3=2

= �2

2
:
h
x�1=2

i1
1

= 1

If a straight line is considered, instead of a point-like light source, then the
function P must be integrated all over this line. Along the line, measurement
is de�ned with a length l. The radius r in the above formulas is replaced by
p2 + l2, where p is the distance of the point (x; y) to the line. The integration
procedure therefore is as follows:

L =

Z +1

�1

d=2�

(p2 + l2 + d2)3=2
dl =

d=2�

p2 + d2

Z +1

�1

d

�
lp

p2+d2

�
"
1 +

�
lp

p2+d2

�2
#3=2

=
d=2�

p2 + d2

�
x

(1 + x2)1=2

�+1
�1

=
d=2�

p2 + d2
:2

If the equation of the line is given by ax+by+c = 0 , then the distance p of a point
(x; y) to this line is given by a well-known formula as p = (ax+by+c)=

p
(a2+b2).

Herewith the light strength of a fuzzy image of a line is given by:

L(x; y) =
d=�

(ax+ by + c)2=(a2 + b2) + d2

This function is known from statistics as a Cauchy distribution. Again, for
d! 0 , a crisp picture is obtained and the integral strength of the light is still
equal to unity.

Comb of Cauchy Distributions

The subject of our current study is a comb P (x) of normed Cauchy distributions
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p(x) at a one dimensional, in�nite and equidistant grid with discretization � ,
embedded on the real axis with coordinate x :

P (x) =

+1X
L=�1

p(x� L:�)� where p(x) =
�=�

�2 + x2

Check that p(x) is indeed normed:

Z +1

�1

�=�

�2 + x2
dx =

Z +1

�1

1=�

1 + (x=�)2
d(x=�) =

1

�

Z +1

�1

dt

1 + t2
=

1

�
[arctan(t)]

+1
�1 = �=� = 1

The spread � of a Cauchy distribution, despite of its name, is not a standard
deviation, as is clear from the following, with help of the above:Z +1

�1

�=�

�2 + x2
x2 dx =

�

�

Z +1

�1

�2 + x2

�2 + x2
dx� �2

Z +1

�1

�=�

�2 + x2
dx

=
�

�
[x]

+1
�1 � �2 : 1 =

�

�
21� �2 =1

Nothing can remove this in�nite outcome for the standard deviation of a Cauchy
distribution. The Fourier series for a comb of Cauchy distributions is:

P (x) = 1 + 2�
1X
k=1

A(k!) cos(k!x)

Where it is reminded that ! = 2�=� . And:

A(y) =

Z +1

�1

p(x) cos(yx) dx =
�

�

Z +1

�1

cos(yx)

�2 + x2
dx

Complex Analysis is required - oh well: for the moment being - in order to solve
for this integral. Here is a web reference for how to do such a thing:

http://math.fullerton.edu/mathews/c2003/IntegralsTrigImproperMod.html

However, a full outcome can be found in the (Dutch) book [ S.T.M Ackermans
& J.H. van Lint, algebra en analyse, Academic Service, Den Haag (1976) ]. On
page 458 we read: Z 1

0

cos(x)

a2 + x2
dx =

�e�a

2a

In concordance with this, we shall rewrite the expression for A(y) a little bit:

A(y) =
�

�

Z +1

�1

cos(yx)y

y2(�2 + x2)
d(yx) =

y�

�

Z +1

�1

cos(x)

(y�)2 + x2
dx
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=
a

�
2

Z +1

0

cos(x)

a2 + x2
dx =

a

�
2
�e�a

2a
= e�a

Where a = y� , resulting in an extremely simple outcome for the coe�cients:
A(y) = e�y� . We conclude that the Fourier series of a Uniform Comb of Cauchy
distributions is given by:

P (x) =

+1X
L=�1

p(x� L�)� = 1 + 2�
1X
k=1

e�k!� cos(k!x)

Where it is reminded that: ! = 2�=�.
It is seen that P (x) is approximately equal to 1 , provided that the rest of
the Fourier series expansion is su�ciently small. First we take, out of thin air,
an "acceptable" (relative) error 0 < � < 1 . As a next step, the following
requirement is imposed. �����2�

1X
k=1

e�k!� cos(k!x)

����� < �

Because the cosine is in between �1 and +1 , it is furthermore evident that a
su�cient condition for the above is:

1X
k=1

e�k!� < �=2

A geometric series is recognized herein:

e�!�
1X
k=0

�
e�!�

�k
< �=2 () e�!�

1� e�!�
< �=2

() e�!� <
�=2

1 + �=2
() � >

�

2�
ln

�
1 + �=2

�=2

�

Therefore the quantity � (alpha) for a Cauchy distribution is de�ned as:

� = ln

�
1 +

2

�

�
� ln(2=�) =) � >

�

2�
�

The latter approximation because errors are supposed to be small. It is noted
that the approximation can also be obtained by considering only the �rst term
of the rest of the Fourier expansion instead of the whole rest of the series. It
is concluded that � is varying somewhat less slowly when compared with the
analogous quantity for Gauss distributions, which has been found before as
� =

p
2 ln(2=�) in Uniform Combs of Gaussians:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/document.pdf
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Improved Error Analysis

Parceval's Theorem for uniform combs of hat functions P (x) with discretization
� reads as follows.

1

�=2

Z +�=2

��=2

P (x)2 dx =
1

2
a20 +

1X
k=1

a2k

Where ak=2 = A(k:!) , ! = 2�=� and:

P (x) =

+1X
L=�1

p(x� L�)� = 1 +

1X
k=1

ak cos(k!x)

Lemma.
1

�=2

Z +�=2

��=2

P (x) dx = 2

Proof. In the subsection Uniform Combs of Hat functions it is has been shown
that:

ak =
1

�=2

Z +�=2

��=2

P (x) cos(k 2�=�x) dx = 2�A(k!) =)

1

�=2

Z +�=2

��=2

P (x) dx = a0 = 2�A(0) = 2

End of proof. But not the end of error analysis.

1

2
a20 = 2A2(0) = 2 ; a2k = 4A2(k!) =)

1

�=2

Z +�=2

��=2

[P (x)� 1]
2
dx =

1

�=2

Z +�=2

��=2

P (x)2 dx� 2
1

�=2

Z +�=2

��=2

P (x) dx+
1

�=2

Z +�=2

��=2

1 dx =

2 + 4

1X
k=1

A2(k!)� 2� 2 + 2 =)

1

�=2

Z +�=2

��=2

[P (x)� 1]
2
dx =

1X
k=1

a2k where ak = 2A(k!)

In words. The square of the di�erences between the comb and unity, integrated
over a discretization interval (and divided by half of it) is equal to the sum of
squares of the Fourier coe�cients (of the cosines).
The left hand side can be interpreted as (twice) a mean square relative error,
which is, of course, a more accurate measure than just the �rst term of the
remaining Fourier series. The former method is quite good for a Uniform Comb
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of Gaussians, but for a uniform comb of e.g. Cauchy distributions, it is already
a bit doubtful, as we have seen in the preceding subsection.
Example. Uniform comb of Gaussians. Let:

1X
k=1

[2�A(k!)]
2
< �2 ()

1X
k=1

e�(k!�)
2

< (�=2)2

Because this series is converging very fast, we decide again to take only the �rst
term of it:

e�(!�)
2

< (�=2)2 () e�(!�)
2=2 < �=2

Thus resulting in exactly the same condition as found before:

� =
�

2�
� where � =

p
2 ln(2=�)

Example. Uniform comb of Cauchy's. Let:

1X
k=1

[2�A(k!)]
2
< �2 ()

1X
k=1

�
e�2!�

�k
< (�=2)2

() e�2!�

1� e�2!�
< (�=2)2 () e�2!� <

(�=2)2

1 + (�=2)2

() � >
�

2�
ln
p
(1 + (2=�)2 � �

2�
ln(2=�)

The latter approximation because errors are supposed to be small. Which then
is the same as found with the simpler method.

Comb of Triangles

The subject of our current study is a Comb P (x) of triangular distributions:

P (x) =

+1X
L=�1

p(x� L:�)�
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where p(x) =

8>><
>>:

0 for x � ��
(� + x)=�2 for �� � x � 0
(� � x)=�2 for 0 � x � +�
0 for +� � x

The geometrical picture is a triangle with base 2� and height 1=�, resulting
in an area 1, thus establishing that the function p(x) is normed. The spread
� > 0 of a triangular distribution, despite of its name, is not exactly a standard
deviation, as is clear from the following:Z +1

�1

x2p(x) dx =

Z 0

��

x2
� + x

�2
dx+

Z +�

0

x2
� � x

�2
dx =

�
x3

3�
+

x4

4�2

�0
��

+

�
x3

3�
� x4

4�2

�+�
0

= �2=3� �2=4 + �2=3� �2=4 = �2=6

=) standard deviation = �=
p
6

P (x) is developed into the standard Fourier series for combs of hat functions:

P (x) = 1 + 2�
1X
k=1

A(k!) cos(k!x) where A(y) =

Z +1

�1

p(x) cos(xy) dx

With a little help from MAPLE - could have done this by hand, but I'm lazy:

int((sigma+x)/sigma^2*cos(y*x),x=-sigma..0) +

int((sigma-x)/sigma^2*cos(y*x),x=0..+sigma);

Giving:

�2(�1 + cos(�y))

�2y2

To be converted into a slightly di�erent expression with cos(2x) = 1�2 sin2(x):

�2�1 + cos(y�)

y2�2
=

sin2( 12y�)

( 12y�)
2

=)

P (x) = 1 + 2�
1X
k=1

�
sin( 12k!�)

1
2k!�

�2
cos(k!x) where ! =

2�

�

The Fourier analysis of a comb of Triangles is somewhat deviant from the Fourier
analysis of a comb of Gaussians or Cauchy distributions. For � = m�, with
m > 0 integer, the outcome is simply P (x) = 1, without any wiggles or giggles.
On the other hand, especially for � = (m+ 1

2 )�, it's much harder to get rid of
those wiggles. Proceeding as usual:

1X
k=1

�
sin( 12k!�)

1
2k!�

�2
�

1X
k=1

�
1

1
2k!�

�2
< �=2 =) 1

( 12!�)
2

1X
k=1

1

k2
< �=2
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Calculations can proceed because of a well known sum:

1X
k=1

1

k2
=

�2

6
= �(2) =) �2

�2�2
�2

6
< �=2 =) �2

�2
< 3 �

=) � =
�p
3 �

or � =
�

2�
� where � =

2�p
3 �

Let's try the "improved" error analysis:

1

( 12!�)
4

1X
k=1

1

k4
< (�=2)2

Calculations can proceed because of a well known sum:

1X
k=1

1

k4
=

�4

90
= �(4) =) �4

�4�4
�4

90
< (�=2)2 =) �4

�4
< 90=4 �2

Conclusion:

� >
�q

�
p
45=2

� 0; 45915
�p
�

or � >
�p
3 �
� 0; 57735

�p
�

After all, it's only a matter of error estimates, no more, no less.

Comb of Rectangles

The subject of our current study is a Comb P (x) of rectangular distributions:

P (x) =

+1X
L=�1

p(x� L:�)�

where p(x) =

8<
:

0 for x � � 1
2�

1=� for � 1
2� � x � + 1

2�
0 for + 1

2� � x
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The geometry of this is a rectangle with width � and height 1=�, resulting in
an area 1, thus establishing that the function p(x) is normed. The spread � > 0
of a rectangular distribution, despite of its name, is not exactly a standard
deviation, as is clear from the following:

Z +1

�1

x2p(x) dx =

Z + 1

2
�

� 1

2
�

x2=� dx =

�
x3

3�

�+ 1

2
�

� 1

2
�

=
�2

8� 3
� 2

=) standard deviation = �=(2
p
3)

P (x) is developed into the standard Fourier series for combs of hat functions:

P (x) = 1 + 2�
1X
k=1

A(k!) cos(k!x) where A(y) =

Z +1

�1

p(x) cos(xy) dx

By hand, because I'm not too lazy:

A(y) =

Z + 1

2
�

� 1

2
�

1=� cos(xy) dx =

�
sin(yx)

y�

�+ 1

2
�

� 1

2
�

=
sin( 12y�)

1
2y�

= sinc(
1

2
y�) =)

P (x) = 1 + 2�
1X
k=1

sin( 12k!�)
1
2k!�

cos(k!x) where ! =
2�

�

The Fourier analysis of a comb of Rectangles is thus similar to the Fourier
analysis of a comb of Triangles. For � = m�, with m > 0 integer, the outcome
is simply P (x) = 1, without any wiggles. On the other hand, especially for
� = (m + 1

2 )�, it's much harder to get rid of those wiggles. Furthermore,
proceeding as usual is virtually impossible because of the terms with 1=k ,
together with the fact that the harmonic series is known to be divergent:

1X
k=1

1

k
=1

So it seems that the only possibility left is our Improved Error Analysis:

1X
k=1

�
sin( 12k!�)

1
2k!�

�2
< (�=2)2

It is seen that the left hand side of this expression is exactly the same as the left
hand side of the normal error analysis for triangular distributions. Therefore
we can immediately conclude that:

� >
�p
3=2 �
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Find more Fourier integrals

High on the wish list of people who �nd Laplace transforms interesting is the
Laplace transform of a sine function:Z 1

0

e�sx sin(x) dx = ??

We proceed by integrating by parts:Z 1

0

e�sx sin(x) dx =

Z 1

0

e�sxd [� cos(x)] =

� �e�sx cos(x)�1
0
+

Z 1

0

cos(x) d
�
e�sx

�
= 1� s

Z 1

0

e�sx cos(x) dx

Feels good. Let's do it again:

1� s

Z 1

0

e�sx cos(x) dx = 1� s

Z 1

0

e�sxd [sin(x)] =

1� s
�
e�sx sin(x)

�1
0
+ s

Z 1

0

sin(x) d
�
e�sx

�
=

1� s2
Z 1

0

e�sx sin(x) dx =

Z 1

0

e�sx sin(x) dx =)

Theorem. Laplace transform of sine:Z 1

0

e�sx sin(x) dx =
1

1 + s2

Theorem. Laplace transform of cosine:Z 1

0

e�sx cos(x) dx =
s

1 + s2

Proof.Z 1

0

e�sx cos(x) dx =

Z 1

0

e�sx d sin(x) =
�
e�sx sin(x)

�1
0
�
Z 1

0

sin(x) de�sx

= 0 + s

Z 1

0

e�sx sin(x) dx =
s

1 + s2

Theorem. Fourier integral of (normed) decay function:Z +1

�1

1

2
e�jxj cos(yx) dx =

1

1 + y2

Proof. Z 1

0

e�sx cos(x) dx =
s

1 + s2
=)

Z +1

�1

1

2
e�jxj cos(yx) dx =

13



1=y

Z 1

0

e�(yx)=y cos(yx) d(yx) = 1=y
1=y

1 + (1=y)2
=

1

1 + y2

Theorem. Half area of sinc function:Z 1

0

sinc(x) dx =
�

2
=) normed =

1

�
sinc(x)

Proof. Z 1

0

�Z 1

0

e�sx sin(x) dx

�
ds =

Z 1

0

�Z 1

0

e�sx sin(x) ds

�
dx

Because iterated limits in the real world do always commute. Now we have a
left hand side and a right hand side. The left hand side, according to the above,
is equal to:Z 1

0

�Z 1

0

e�sx sin(x) dx

�
ds =

Z 1

0

ds

1 + s2
= [arctan(s)]

1
0 =

�

2

The right hand side, on the other hand:Z 1

0

�Z 1

0

e�sx sin(x) ds

�
dx =

Z 1

0

sin(x)

�Z 1

0

e�sx ds

�
dx =

Z 1

0

sin(x)
1

x

��e�y�1
0

dx =

Z 1

0

sin(x)

x
dx Q.E.D.

Theorem. Fourier integral of sinc function:Z +1

�1

sinc(x) cos(yx) dx = A(y)

Where:

A(y) =

8<
:

0 for y < �1
� for �1 < y < +1
0 for +1 < y

Proof.

2 sin(�) cos(�) = sin(�+ �) + sin(�� �) =)Z +1

�1

sin(x) cos(yx)

x
dx =

1

2

Z +1

�1

sin(x+ yx)

x
dx+

1

2

Z +1

�1

sin(x� yx)

x
dx

=
1

2

Z +1

�1

sin((1 + y)x)

(1 + y)x
(1 + y) dx+

1

2

Z +1

�1

sin((1� y)x)

(1� y)x
(1� y) dx

Now let u = (1 + y)x and v = (1� y)x . Then:

Z +1

�1

sin((1 + y)x)

(1 + y)x
(1 + y) dx =

(
+
R +1
�1

sinc(u) du for 1 + y > 0

� R +1
�1

sinc(u) du for 1 + y < 0

14



Z +1

�1

sin((1� y)x)

(1� y)x
(1� y) dx =

(
+
R +1
�1

sinc(v) dv for 1� y > 0

� R +1
�1

sinc(v) dv for 1� y < 0

Where
R +1
�1

sinc(u) du = 2
R1
0

sinc(v) dv = 2: 12� = �. Summarizing:

R +1
�1

sinc(u) du
R +1
�1

sinc(v) dv
R +1
�1

sinc(x) cos(yx) dx

y < �1 �� +� 0
�1 < y < +1 +� +� �

+1 < y +� �� 0

Theorem. Parceval's theorem for sinc function:Z +1

�1

sinc2(x) dx = � =) normed =
1

�
sinc2(x)

Proof. The integral of the square of the Fourier transform of a function is equal
to the integral of the square of the function itself.9738 Tf 9.962 -2.4'syx v)



Where we have put �x=� = � . The latter outcome is equal to a block function
B�(y), where:

B�(y) =

8<
:

0 for �=�y < �1
�=� for �1 < �=�y < +1
0 for +1 < �=�y

Written otherwise:

B�(y) =

8<
:

0 for y < ��=�
1 for ��=� < y < +�=�
0 for +�=� < y

Conclusion - remember that ! = 2�=� :

+1X
L=�1

�

�
sinc

��
�
[x� L�]

�
= 1 + 2�

1X
k=1

B�(k!) cos(k!x)

The right hand side is exactly equal to one i� for all k > 1 :

+�=� < k! () �
�

2�
< � () � >

�

2

A true miracle has happened. There is no error present, at all, in the following
formula. Which thus holds exactly, for any � > �=2 :

+1X
k=�1

�

�
sinc

��
�
[x� k�]

�
= 1

Where have we seen this before .. ? Let f(x) = 1 and fk = f(k�) and do a
trivial rewrite:

+1X
k=�1

�

�
fk sinc

��
�
[x� k�]

�
= f(x)

Now take a look at Shannon's Sampling Theorem, for example at:

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
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It should be obvious that there exists a correspondence with our own theory. It is
also clear that the Special Theory of Continuity can, in principle, be modi�ed as
to include general function behaviour as well: f(x) 6= 1 . And there is a section
Nonuniform sampling in that web page, where we can read about a second item
on our To Do list: the sampling theory of Shannon can be generalized for the
case of nonuniform samples.

Inverse Fourier transform method

We have found that the Fourier transform of a block function is a sinc and
the Fourier transform of a sinc is a block function. This is, of course, no
coincidence. Hat functions are symmetric, therefore the Fourier integral and
the inverse thereof are:Z +1

�1

p(x) cos(yx) dx = A(y) () 1

2�

Z +1

�1

A(y) cos(xy) dy = p(x)

So if the Fourier integral of a hat function p(x) is A(y), then the Fourier integral
of the hat function A(x) is 2�p(y) . Let's check it at hand of functions in previous
subsections:

p(x) =
1

�
sinc

��
�
x
�

() A(y) =

8<
:

0 for y < ��=�
1 for ��=� < y < +�=�
0 for +�=� < y

p(x) =

8<
:

0 for x � � 1
2�

1=� for � 1
2� � x � + 1

2�
0 for + 1

2� � x
() A(y) = sinc(

1

2
y�)

Modify the latter formulas by the method of careful substitution. Three steps
can be distinguished in this procedure: (1) adjust proper spread, (2) adjust
proper norm, (3) what's in a name? Okay, let's just do it. Start with adjusting
proper spread and let �=2! �=� :

p(x) =

8<
:

0 for x � ��=�
�=(2�) for ��=� � x � +�=�
0 for +�=� � x

() A(y) = sinc(y�=�)

Now adjust proper norm by multipling both right hand sides with 2�=� :

p(x) =

8<
:

0 for x � ��=�
1 for ��=� � x � +�=�
0 for +�=� � x

() A(y) = 2� � 1

�
sinc(y�=�)

At last, what's in a name? By x $ y and p $ A , where, according to the
inverse Fourier transform method, the factor (2�) must be discarded:

p(x) =
1

�
sinc

��
�
x
�

() A(y) =

8<
:

0 for y < ��=�
1 for ��=� < y < +�=�
0 for +�=� < y

17



Quod Erat Demonstrandum / Quite Easily Done.
Slightly more interesting is to apply the method for obtaining a new result,
instead of reproducing an old one. Copy and paste from the subsection Comb

of Triangles:

p(x) =

8>><
>>:

0 for x � ��
(� + x)=�2 for �� � x � 0
(� � x)=�2 for 0 � x � +�
0 for +� � x

() A(y) = sinc2(
1

2
y�)

Modify the latter formulas by the method of careful substitution. Adjust proper
spread �rst and let �=2! �=� again:

p(x) =
�

2�

8>><
>>:

0 for x � �2�=�
1 + x�=(2�) for �2�=� � x � 0
1� x�=(2�) for 0 � x � +2�=�
0 for +2�=� � x

() A(y) = sinc2(y�=�)

Now adjust proper norm by multipling both right hand sides with 2�=� :

p(x) =

8>><
>>:

0 for x � �2�=�
1 + x�=(2�) for �2�=� � x � 0
1� x�=(2�) for 0 � x � +2�=�
0 for +2�=� � x

() A(y) =
2�

�
sinc2(y�=�)

Now in the space domain p(0) = 1, which is the same as, in the Fourier domain:

2�

�

Z +1

�1

sinc2(y�=�) dy = 2

Z +1

�1

sinc2(y�=�) d(y�=�) = 2�

At last, what's in a name? By x $ y and p $ A , where, according to the
inverse Fourier transform method, the factor (2�) must be discarded:

p(x) =
1

�

�
sin(�=� : x)

�=� : x

�2
=

1

�
sinc2

��
�
x
�

() A(y) =

8>><
>>:

0 for y � �2�=�
1 + y�=(2�) for �2�=� � y � 0
1� y�=(2�) for 0 � y � +2�=�
0 for +2�=� � y

Resulting in a Comb of Squared Sinc functions that we haven't seen before:

�

�

+1X
L=�1

sinc2
��
�
[x� L�]

�
= 1 +

1X
k=1

A(k!�) cos(k!x)

18



So what we have now is the rectangle and the sinc function, the triangle and
the sinc squared function. We also have a Cauchy distribution and exponential
decay:

p(x) =
�=�

�2 + x2
() A(y) = e�jyj�

The absolute value is needed because we must have a hat shape and at the same
time prevent an explosion for negative y . The other way around; adjust proper
spread �rst. For an exponential decay that is exp(�jyj=�) , where � is the decay
rate. Therefore substitute � ! 1=� , resulting in:

p(x) =
�=�

1 + (x�)2
() A(y) = e�jyj=�

Now adjust proper norm by multipling both right hand sides with �=� :

p(x) =
1

1 + (x�)2
() A(y) = 2� � e�jyj=�

2�

At last, what's in a name? By x $ y and p $ A , where, according to the
inverse Fourier transform method, the factor (2�) must be discarded:

p(x) =
e�jxj=�

2�
() A(y) =

1

1 + (y�)2

Resulting in a Comb of Exponential Decays that we haven't seen before:

�

2�

+1X
L=�1

e�jx�L�j=� = 1 +

1X
k=1

cos(k!x)

1 + (k!�)2

There are a hundred ways to Rome, though. We could have found this result
in a far more direct way with integrals from the subsection Find more Fourier

integrals.
Working the other way around - that is: starting with exponential decays and
with the inverse Fourier transform method �nd the Cauchy distribution - we
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could have avoided the complex analysis solution employed in the subsection
Comb of Cauchy Distributions.

Last but not least, here is our beloved Gaussian:

p(x) =
1

�
p
2�

e�
1

2
(x=�)2 () A(y) = e�

1

2
(y�)2

Proper spread with � ! 1=� :

p(x) =
�p
2�

e�
1

2
(x�)2 () A(y) = e�

1

2
(y=�)2

Proper norm with times
p
(2�)=� :

p(x) = e�
1

2
(x�)2 () A(y) =

p
2�

�
e�

1

2
(y=�)2 = 2� � 1

�
p
2�

e�
1

2
(y=�)2

At last, what's in a name? By x $ y and p $ A , where, according to the
inverse Fourier transform method, the factor (2�) must be discarded:

p(x) =
1

�
p
2�

e�
1

2
(x=�)2 () A(y) = e�

1

2
(y�)2

Herewith, everything considered so far has been covered: Gaussian $ itself,
Cauchy $ Decay, Block $ Shannon, Triangle $ Squared.

Special Theory Finishing Touches

So far so good about the General perspective, but the Special Theory is still in
the need of some �nishing touches. One of the �rst is that the above interpola-
tion with sinc functions is by far not the only possibility to have a (theoretically)
error free recovery of a function from its samples. In fact, any hat function with
a band limited Fourier transform will do the job.
Such another bandlimited hat function has been found in the subsection Inverse

Fourier transform method. It is:

p(x) =
1

�

�
sin(�=� : x)

�=� : x

�2
=

1

�
sinc2

��
�
x
�
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() A(y) =

8>><
>>:

0 for y � �2�=�
1 + y�=(2�) for �2�=� � y � 0
1� y�=(2�) for 0 � y � +2�=�
0 for +2�=� � y

Resulting in this comb of squared sinc functions:

�

�

+1X
L=�1

sinc2
��
�
[x� L�]

�
= 1 +

1X
k=1

A(k!) cos(k!x)

Because A(y) is a triangle which is zero for jyj � 2�=� , it is clear that A(k!) = 0
for all k > 0 i�:

A(!) = 0 () 2�

�
� 2�

�
() � � �

And the true miracle has happened again. There is no error present, at all, in
the following formula. Which thus holds exactly, for any � � � :

+1X
k=�1

�

�
sinc2

��
�
[x� k�]

�
= 1

And we are not �nished yet. As I have said, any hat function with a band
limited Fourier transform will do the job. There is a thread in the Usenet /
Google newsgroup sci.math written by this author and called Sum of inverse

cubes. Yes, that's what you can do with combs of hat functions ! The reference -
and my fooling around with the illusion of a great new discovery - can be found
in the mathematics newsgroup at:

http://groups.google.nl/group/sci.math/msg/112107155baa4df7

Note. The result would only have been brand new if a closed expression would
have been found for e.g.

P1
k=1 1=k

3. This is "a bit" di�erent from the discovery
at hand, which on the contrary is a well known result.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
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