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The subject of our current study are Combs of Bell shaped curves P (x) . A
special but relevant case will be considered in the first place, namely Gauss
curves with a spread σ , on a one dimensional, infinite and equidistant grid with
discretization ∆ , embedded on the real axis with coordinate x :

P (x) =
+∞∑

L=−∞
e−

1
2 [(x−L.∆)/σ]2

The function P (x) can be interpreted as an attempt to ”smooth” the uniform
density xL = L.∆ . Or ”make fuzzy” the discretization f(xL) = 1 of a constant
- and continuous - function f(x) = 1 .

As calculated by (version 0.1 of):

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/Project5.exe

Fourier Series

It is easily shown that the above function is periodic. Its period is equal to ∆:
P (x+∆) = P (x) for arbitrary x. This means that P (x) can be developed into a
Fourier series. In addition, the function is even, meaning that P (x) = P (−x),
which results in real-valued Fourier coefficients Ak. They are calculated initially
as complex-valued entities.

Ak + iBk =
1

∆/2

∫ +∆/2

−∆/2

P (x)ei k 2π/∆ . xdx =

In the sequel, kind of an angular frequency ω will stand for the quantity = 2π/∆.
Then let the calculations continue:

=
1

∆/2

∫ +∆/2

−∆/2

+∞∑
L=−∞

e−(x−L∆)2/2σ2
eikωxdx =

1



1
∆/2

+∞∑
L=−∞

∫ +∆/2

−∆/2

e−(x−L∆)2/2σ2
eikωxdx

Substitute y = x− L∆ and integrate to y:

Ak + iBk =
1

∆/2

+∞∑
L=−∞

∫ +∆/2−L∆

−∆/2−L∆

e−y
2/2σ2

eikω(y+L∆)dy =

Where:
eikω(y+L∆) = eikωyeikL2π = eikωy.1

Next replace y by −y and switch integration bounds:

Ak + iBk =
1

∆/2

+∞∑
L=−∞

∫ L∆+∆/2

L∆−∆/2

e−y
2/2σ2

eikω(−y)dy

The above integrals are precisely the adjacent pieces of another integral which
has bounds reaching to infinity. That is, they sum up to an infinite integral:

Ak + iBk =
1

∆/2

∫ +∞

−∞
e−y

2/2σ2
e−ikωydy =

1
∆/2

∫ +∞

−∞
e−y

2/2σ2−ikωy

The argument of the exponential function can be written as follows:

−y2/2σ2 − ikωy = −1
2

(y2/σ2 − 2.ikωσ.y/σ) =

−1
2
{y2/σ2 − 2.ikωσ.y/σ + (ikωσ)2}+

1
2

(ikωσ)2 =

−(y/σ − ikωσ)2/2− (kωσ)2/2

Resulting in:
1

∆/2

∫ +∞

−∞
e−(y/σ−ikωσ)2/2e−(kωσ)2/2 dy =

e−(kωσ)2/2 1
∆/2

∫ +∞

−∞
e−(y−ikωσ2)2/2σ2

dy

We know that the integral is equal to σ
√

2π, giving at last:

Ak + iBk = Ak =
σ
√

2π
∆/2

e−(kωσ)2/2

The Fourier series of any periodic function is given by:

P (x) =
1
2
A0 +

∞∑
k=1

Ak cos(kωx)
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We conclude that the Fourier series of a Uniform Comb of Gaussians is given
by:

P (x) =
+∞∑

L=−∞
e−(x−L∆)2/2σ2

= σ
√

2π

[
1
∆

+
1

∆/2

∞∑
k=1

e−(kωσ)2/2 cos(kωx)

]

Where it is reminded that: ω = 2π/∆.

Continuization

As has been said, the Uniform Comb of Gaussians can - or rather maybe should
- be interpreted as an attempt to ”make continuous again” the discrete function
p(xL = L.∆) = 1 . The latter may be considered as the discretization or
sampling of a continuous (constant) function: p(x) = 1 . Thinking along these
lines, a natural question is ”how good” the continuization achieved by the Comb
of Gaussians will be, depending on the sampling frequency ω = 2π/∆ and the
spread σ . It is expected that the Fourier Analysis of the preceding section will
give us kind of a clue about it:

P (x) =
+∞∑

L=−∞
e−(x−L∆)2/2σ2

= σ
√

2π

[
1
∆

+
1

∆/2

∞∑
k=1

e−(kωσ)2/2 cos(kωx)

]

It is seen that P (x) is approximately equal to a constant, indeed, namely
σ
√

2π.1/∆ , provided that the next term is sufficiently small. First we take,
out of thin air, an ”acceptable” (relative) error, called ε(> 0) . As the next
step, we require that the (amplitude of) the second term divided by the first is
smaller than the error:

σ
√

2π 1
∆/2e

−(1.ωσ)2/2

σ
√

2π.1/∆
= 2 e−(ωσ)2/2 < ε =⇒ −1

2
(ωσ)2 < ln(ε/2)

=⇒ (
2π
∆
σ)2 > 2 ln(2/ε) =⇒ σ >

∆
2π

√
2 ln(2/ε)

We define the quantity α (alpha) as:

α =
√

2 ln(2/ε) =⇒ σ >
∆
2π
α

Happily for everybody, α is varying very slowly as a function of ε . Therefore
it’s not necessary to determine that error very precise, in order to have a quite
good estimate of the spread σ in the Gaussians. The typical thing is, though,
that we really need a finite error. For if ε could be zero, then α would become
infinite and the whole theory would evaporate into nothingness. It’s impossible
to make the discrete continuous in a mathematics without errors.
Out of thin air .. When visualizing the results of such a ”fuzzyfication” as a
gray valued image, the Comb is always normed, meaning that all values are
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divided by their maximum value. Thus maximum values are made equal to
= 1, corresponding with black pixels. A natural error with such gray valued
images is the lowest increment in grayness, which on a scale ranging from 0 to
1 is equal to 1/256 . Hence, in this case: α =

√
2 ln(512) ≈ 3.53223 , a value

which is used throughout in the software accompanying this article.
Another issue is computational efficiency with summing the terms of the Comb.
So let’s investigate where the values of a Gaussian can be neglected, when
compared with our acceptable error (divided by 2 for even better accuracy - we
employ the fact that α is rather insensitive to precise values and we prefer to
define it once and forever):

e−
1
2 [(x−L.∆)/σ]2 < ε/2 =⇒ [(x− L.∆)/σ]2 > 2 ln(2/ε) =⇒

|x− L.∆| > σ
√

2 ln(2/ε) = σα

This means that only a neighborhood |x− L.∆| < σα around xL = L.∆ needs
to be investigated, when evaluating therms of the Comb of Gaussians.

A Curve as a Comb

When conceived as an image, a continuous real-valued curve (x, y) = [f(s), g(s)]
is actually sort of a delta function. Here the arc length (s) serves as the standard
running parameter.

C(x, y) = δ([x− f(s)]2 + [(y − g(s)]2)

Because it is infinity (make that = 1 and substitute black pixels) for (x, y) =
[f(s), g(s)] and zero (substitute white pixels) everywhere else. In reality, of
course, imaging a delta function is impossible, because:

An ideal curve is infinitely thin
So there is no place to put color dots in

Ideal curves are essentially invisible. However, a quite convenient fuzzyfication
(δ) of the delta function is the Gauss function:

δ(x) = lim
σ→0

1
σ
√

2π
e−

1
2x

2/σ2
=⇒ δσ(x) =

1
σ
√

2π
e−

1
2x

2/σ2

Therefore any discretized curve, at N sampling points s = sk , can be made
approximately continuous again, as follows (apart from a norming factor, which
can always be determined afterwards).

C(x, y) =
k=N∑
k=0

e−
1
2 ([x−f(sk)]2+[y−g(sk)]2)/σ2

In order for the theory in the preceding subsections to be applicable, it’s essential
that the points sk along the curve are more or less equidistant. And if such is not
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the case, define only one σ , which is based then upon the largest arc increment.
It’s left as an exercise for the reader to guess what the reason is behind these
rules. Back to business now. The taste of the pudding is in the eating. You’re
invited to take a look at the sampled and continuized decay function / the
sampled and continuized hyperbola:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/Project3.exe
http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/Project4.exe

There’s another story behind the sampled decay function, namely the Numerical
Ensemble of Exponential Decays:

http://groups.google.nl/group/sci.math/msg/d90f07f7523b0d52
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Source code is freely available as well, though still under development:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte.zip

A few remarks are in order. The above technique has been developed for curves
in the plane. Meaning, physically, that the functions f and g in (x, y) =
[f(s), g(s)] have dimension of length. The spread σ has a dimension of length
as well. Hence the exponent of a Gaussian, as a whole, is dimensionless. With
functions instead of curves, other physical dimensions than length may be easily
involved. In such cases, proper scaling of the x and y coordinates is essential.
One can hardly expect consistent results if f(s) = apples and g(s) = pears.
Proper scaling is accomplished most easily and naturally by the use of dimen-
sionless quantities. With exponential decay, for example, the x coordinate is
time and the y coordinate is mass; dimensionless quantities emerge if we divide
time by the decay time and if we consider a mass of 1 kilogram.
With Exponential Decay, we had no other choice than leaving the uniform ab-
scissa increments intact, though it leads to arc length increments differing at
most by a factor

√
2 (we choose the largest one). With the hyperbola, we

have employed a predictor for abscissa increments, given that the arc length
increments ds are constant. Because it is well known that each differentiable
function, within a small enough neighborhood, is a straight line segment. Thus
our predictor is: dx = ds/

√
1 + (y′)2 = ds/

√
1 + (1/x2)2 .

Fuzzyfied Straight Line

Three steps forward, two steps backward. We are going to compare some fuzzy-
fied continuous entities with their discrete counterparts and see if it is possible
to distinguish between the two. The two obvious candidates are a straight line
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and a circle. We start with the line. The equations of an ideal straight line are:{
x = a+ cos(φ) t
y = b+ sin(φ) t

Here (x, y) = plane coordinates, φ = angle with horizontal (constant), (a, b) =
point on this line, t = running parameter. All numbers real valued by default.
Lemma.

[x− a− cos(φ) t]2 + [y − b− sin(φ) t]2

= [t− {cos(φ)(x− a) + sin(φ)(y − b)}]2 + [sin(φ)(x− a)− cos(φ)(y − b)]2

Proof.
[x− a− cos(φ) t]2 + [y − b− sin(φ) t]2

= (x− a)2 + (y − b)2 + t2 − 2[cos(φ)(x− a) + sin(φ)(y − b)]t

= t2 − 2[cos(φ)(x− a) + sin(φ)(y − b)]t+ [cos(φ)(x− a) + sin(φ)(y − b)]2

−[cos(φ)(x− a) + sin(φ)(y − b)]2 + (x− a)2 + (y − b)2

= [t− {cos(φ)(x− a) + sin(φ)(y − b)}]2 − cos2(φ)(x− a)2 − sin2(φ)(y − b)2

−2 cos(φ)(x− a) sin(φ)(y − b) + (x− a)2 + (y − b)2

= [t− {cos(φ)(x− a) + sin(φ)(y − b)}]2 + sin2(φ)(x− a)2 + cos2(φ)(y − b)2

−2 sin(φ)(x− a) cos(φ)(y − b)

=⇒ [x− a− cos(φ) t]2 + [y − b− sin(φ) t]2

= [t− {cos(φ)(x− a) + sin(φ)(y − b)}]2 + [sin(φ)(x− a)− cos(φ)(y − b)]2

Quite Easy Done. The (Gaussian) fuzzyfication of an ideal straight line will
now be defined as follows.

L(x, y) =
∫ +∞

−∞
e−Q(x,y,t)/2dt

where Q(x, y, t) = {[x− a− cos(φ) t]2 + [y − b− sin(φ) t]2}/σ2

With help of the lemma we find for the integral:

= e−([sin(φ)(x−a)−cos(φ)(y−b)]/σ)2/2

∫ +∞

−∞
e−([t−{cos(φ)(x−a)+sin(φ)(y−b)}]/σ)2/2dt

=⇒ L(x, y) =
√

2πσ e−([sin(φ)(x−a)−cos(φ)(y−b)]/σ)2/2

Dividing by
√

2πσ results in a function with values between 0 and 1: sort of
probability. Thus a thickness for the fuzzyfied line may be defined as being
σ. Numerical experiments may be carried out now and it is for you to decide
whether it’s possible to see any difference between the fuzzyfied continuous and
the continuized discrete:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/Project6.exe
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Continuing Circular

Now let’s do the same for a circle with midpoint (a, b) and radius R:

C(x, y) =
k=N∑
k=0

e−
1
2 [A(x,y,tk)/σ]2 where tk = k.2π/N

and A(x, y, t) = [x− a−R. cos(t)]2 + [y − b−R. sin(t)]2

When given the spread σ of the Gaussians, the increment ∆t of the angles and
hence the number N of them needed can be calculated:

σ =
R∆t
2π

α =
Rα

N
=⇒ N =

αR

σ
=⇒ R

σ
=
N

α

There is some subtlety involved with the fact that N is an integer. But the rest
is a matter of routine. When running the program (’Project2.exe’), you will
notice that it’s not possible to observe (i.e. see) the discretization, despite of
the fact that the angle increments can be reasonably large. and thus the circle
itself even more fuzzy. For comparison, the circle equation is also fuzzyfied
without any discretization at all. This is the following expression.

C(x, y) = e−
1
2 [
√

(x−a)2+(y−b)2−R]2/σ2

Contrary to alike experiments with the straight line (: previous subsection) it
will be found that there is a difference: for ”larger” angle increments.
An interesting question to ask is at which discretization the inner area of the
circle becomes so much crowded with black pixels that the curve itself cannot be
observed anymore. Here comes a calculation, based upon the Fourier Analysis
of a preceding subsection. Assume that the Comb of Gaussians on a circle is
more or less like a Comb of Gaussians on a straight line segment. Then, due
to our choice of σ such that exp(−(2π/(R∆t)σ)2/2) < ε , only the first term of
that Fourier series is significant:

C(x, y) ≈ σ
√

2π
[

1
R∆t

]
This has to be compared with the contributions of the Gaussians at the midpoint
of the circle:

Ne−
1
2 (R/σ)2

The difference of the two must be positive, in order to prevent excessive blurring:

σ
√

2π
1

R∆t
> Ne−

1
2 (R/σ)2

with:
R

σ
=
N

α
; ∆t =

2π
N

Simplify and express everything as a function of N :

σ

R

√
2π

1
∆t

=
α

N

√
2π

N

2π
> Ne−

1
2 (N/α)2

=⇒ α√
2π

> Ne−
1
2 (N/α)2
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=⇒
√

2π
N

α
e−

1
2 (N/α)2

< 1 =⇒ 1
2

ln(2π) + ln(N/α)− 1
2

(N/α)2 < 0

When conceived as a continuous function of a real variable x it reads:

f(x) =
1
2

ln(2π) + ln(x)− 1
2
x2 where x =

N

α
> 0

For x = 1 (hence N = α if such a thing were possible):

f(1) =
1
2

ln(2π)− 1
2
> 0 because 2π > e

The derivative of the function is negative for x > 1:

f ′(x) =
1
x
− x =

1− x2

x
< 0 for x > 1

Hence the function is monotonically decreasing for N > α ≈ 3.53223 , read:
N > 4. So we can start with N = 4 and watch the moment that f(x) becomes
negative:

N = 4 : value = 4.02105679716663E-0001 < 0 : FALSE
N = 5 : value = 2.64575470808632E-0001 < 0 : FALSE
N = 6 : value = 6.07354288651423E-0003 < 0 : FALSE
N = 7 : value = -3.60748986496131E-0001 < 0 : TRUE
N = 8 : value = -8.28340527575343E-0001 < 0 : TRUE
N = 9 : value = -1.39183015011653E+0000 < 0 : TRUE

From this we conclude that the situation becomes ”normal” at N = 7 . And -
working the other way around - coarsening of the angle increments should not
proceed beyond N = 6 , corresponding with an angle increment of 60o (not
really a very small increment). There is software which does the slide show:

http://hdebruijn.soo.dto.tudelft.nl/jaar2010/dikte/Project2.exe

At the critical angle increment π/3 , our fuzzyfied circle may be considered as a
hexagon. For each of the vertices of that hexagon, we calculate the contributions
from itself and the other vertices, as compared with the contributions to the
midpoint. Let’s assume that these contributions cancel each other out:

1 + 2 e−
1
2 (R/σ)2

+ 2 e−
1
2 (R
√

3/σ)2
+ e−

1
2 (2R/σ)2

− 6 e−
1
2 (R/σ)2

= 0
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If we put:

X = e−
1
2 (R/σ)2

= e−
1
2 (∆/σ)2

= e−
1
2 (2π/α)2

=⇒ α =
2π√

2 ln(1/X)

Then the above may be considered as an equation to find ”break even” quantities
X, α =

√
2 ln(2/ε) and finally ε :

1− 4X + 2X3 +X4 = 0 =⇒ α =
2π√

2 ln(1/X)
=⇒ ε = 2 e−

1
2α

2

Newton-Rhapson iteration with X = 1/4 as a starting value does the job. The
outcomes are:

X = 2.59921049894873E-0001
alpha = 3.82754450862769E+0000
eps = 1.31765544168695E-0003 < 1/256

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
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