Cone and Parabola

Author: Han de Bruijn Dated: 2010 April

Figure 1.

Our main reference is page 3 of the following article: http://hdebruijn.soo.dto.tudelft.nl/jaar2006/kegels.pdf The Conic Section Equation in that reference is quoted:

 $A x^{2} + B xy + C y^{2} + D x + E y + F = 0$

Where the coefficients are given by - more quotes:

$$A = \cos^{2}(\phi) - \cos^{2}(\alpha)\cos^{2}(\gamma)$$

$$B = -2\cos^{2}(\alpha)\cos(\gamma)\sin(\gamma)$$

$$C = \cos^{2}(\phi) - \cos^{2}(\alpha)\sin^{2}(\gamma)$$

$$D = -2Ap - Bq + \sin(2\alpha)\cos(\gamma)h$$

$$E = -Bp - 2Cq + \sin(2\alpha)\sin(\gamma)h$$

And quoting an equation for F:

$$A p^{2} + B pq + C q^{2} + D p + E q + F = h^{2} \left[\cos^{2}(\phi) - \sin^{2}(\alpha) \right]$$

The essentials of the cone and intersecting plane configuration are projected in the (y, z) plane and depicted in figure 1. The following algebraic facts are extracted from this geometry:

$$\gamma = \pi/2$$

$$\alpha = -\phi$$

$$p = 0$$

$$\frac{h}{-q} = \tan(2\phi)$$

Here with the abovementioned coefficients of the Conic Section Equation are simplified considerably, because $\cos(\gamma)=0$, $\sin(\gamma)=1$, $\cos(\alpha)=\cos(\phi)$, $\sin(\alpha)=-\sin(\phi)$. Giving upon substitution with the rest of the data:

$$A = \cos^{2}(\phi)$$
$$B = 0$$
$$C = 0$$
$$D = 0$$
$$E = -\sin(2\phi) h$$

And:

$$F = -E q + h^2 \left[\cos^2(\phi) - \sin^2(\phi) \right] \implies$$
$$F = \sin(2\phi) h q + h^2 \cos(2\phi) = \cos(2\phi) h q \left[\tan(2\phi) + \frac{h}{q} \right] = 0$$

The latter can also be derived from the mere fact that the origin O is on the (parabolic) curve. Whatever. Our Conic Section Equation reduces to:

$$A x^{2} + E y = 0 \implies \cos^{2}(\phi) x^{2} - \sin(2\phi) h y = 0 \implies$$
$$y = \frac{\cos^{2}(\phi) x^{2}}{2h \sin(\phi) \cos(\phi)} = \frac{x^{2}}{2h \tan(\phi)} = \frac{x^{2}}{2hR/H}$$

Where R = radius of base circle and H = height of cone, as seen in figure 1. It is seen from the same figure that $h = H \sin(\phi)$ and $\sin(\phi) = R/\sqrt{H^2 + R^2}$. Upon substitution of all this we obtain:

$$y = \frac{x^2}{2H\sin(\phi)R/H} = \frac{x^2}{2R^2/\sqrt{H^2 + R^2}}$$

Which is the end result, expressing the parabola in parameters of the cone:

$$y = a x$$
 where $a = \frac{\sqrt{H^2 + R^2}}{2R^2}$

Oh yeah, but all of the above is only valid for a > 0. The case a < 0 can be covered by mirroring the cone (see figure 1) in the (x, z) plane.

Disclaimers

Anything free comes without referee :-(My English may be better than your Dutch.