
Implementable Set Theory
and Consistency of ZFC

Author: Han de Bruijn
Date: 2007 October

Abstract
With help of a bijection, which was basically discovered by Alexander

Abian, a ”simple model”, or rather an Implementation of Set Theory in
memory of common digital computers, has been conceived, in theory as
well as in practice. With the implementation it can be proved that eight
out of the nine axioms of ZFC are consistent, and that only the first four
axioms are necessary for a constructive build of all sets. The ninth axiom
of ZFC, Infinity, is not implementable.

Introduction

Instead of augmenting the already numerous attempts with one other attempt
for founding the whole of Mathematics upon still another kind of Set Theory,
quite a different strategy has been adopted in this article. Our purpose is to
obtain a set theory which is just a theory of sets, that is: not suitable per se as
a Foundation of Mathematics.
One thing that bothers us is: whether such a theory of sets can be implemented
using existing - and future - computer hardware and software. In such a way
that there are no bits and bytes left; our sets must be such that they are able
to consume all memory of any computer (not yet) available.
The text in this article is accompanied with source code in Delphi Pascal. Most
of the time, only the headers of a possible implementation are displayed in the
text body. The rest is stored as an archive and can be downloaded here:

http://hdebruijn.soo.dto.tudelft.nl/jaar2007/OPERATIE.ZIP

It is emphasized that all (source) code are just rapid prototype programs for
demonstration purposes. So please don’t expect a plug and play package.
Our theory of sets will not be very different from common set theory, except
that it seems to be more limited in its foundational scope. But yet it will reveal
some hitherto undiscovered features, as might be clear from the Abstract.
In order to be sure not to miss anything, sections in the paper are named as
chapters in: Paul R. Halmos, Naive Set Theory, D. van Nostrand Company,
Inc., Princeton 1964. The book is followed as closely as possible. (But not too
closely :-) The other key reference is: on the consistency and independence of
some set-theoretical axioms, by Alexander Abian and Samuel LaMacchia:

http://projecteuclid.org/DPubS/Repository/1.0/Disseminate
?view=body&id=pdf_1&handle=euclid.ndjfl/1093888220

Last but not least, There is an ongoing, or finished, debate in sci.math about
the article:

http://groups.google.nl/group/sci.math/browse_frm/thread/d71aaa8e07e3af15

1

Set implementations

It is possible to implement a set within the hardware and software of common
digital computers in a number of ways. Only four possibilities are employed in
this paper. They are:

- a set is an array
- a set is a bitmap
- a set is a number
- a set is a string

Let me clarify this with a few simple examples. Consider the set:

{b, d, d, c, a}

Such a set can conveniently be implemented as an array of objects. In my
favorite programming language (Delphi Pascal) it reads:

type
objects = array of TObject;

A set with the above objects as members might be created as follows:

procedure only_here;
var
a,b,c,d : TObject;
S : objects;

begin
{ Urelements }
a := TObject.Create; b := TObject.Create;
c := TObject.Create; d := TObject.Create;

{ Set }
SetLength(S,5);
S[0] := b; S[1] := d; S[2] := d; S[3] := c; S[4] := a;

end;

But, suppose that we consider instead the following set, containing numbers:

{2, 7, 7, 5, 1}

Then the same set can also be implemented by a series of bits, a bitmap, where
a ”bit up” | means that the corresponding element is a member of the set:

.. 0010100110
| | ||

.. 9876543210

The bits are numbered from the right to the left, starting with zero. Thus bit
0 is down i.e. 0 is not a member; bit 1 is up i.e. 1 is a member; bit 2 is up, i.e.

2

2 is a member; bit 3 is down i.e. 3 is not a member; bit 4 is down i.e. 4 is not
a member; bit 5 is up i.e. 5 is a member; bit 6 is down i.e. 6 is not a member;
bit 7 is up i.e. 7 is a member. The calling sequence for encoding an array of
integers as a bitmap could be defined by:

function makeSet(S : integers) : bitmap;

But one and the same bitmap can also interpreted as a number:

.. 0010100110 (binary) = 166 (decimal)

At last, the set O = {b, d, d, c, a} as well as the set N = {2, 7, 7, 5, 1} can be
implemented (more or less trivially) as strings. In Delphi Pascal this would
read:

O := ’{b,d,d,c,a}’;
N := ’{2,7,7,5,1}’;

It will be assumed in the sequel that the size of all set implementations can be as
large as needed, which is the same as saying that we have a virtually unlimited
amount of memory at our disposal. Thus all possible limitations of current (as
well as future) digital computer hardware are assumed not to be relevant in any
respect. Let’s start reading in Halmos’ book now.

Axiom of Extensionality

The most important undefined notion in set theory is being a member of a set.
If a is a member of A then we shall write, according to Halmos:

a ∈ A

Fortunately, this notion can be mapped upon our TObject arrays in a well
defined manner. Calling sequence defined by:

function is_in(e : TObject; X : Objects) : boolean;

It can also be mapped upon our bitmapped arrays in a well defined manner.
Calling sequence defined by:

function is_in(e : integer; X : bitmap) : boolean;

Programming such calling sequences for a strings implementation is a bit less
trivial, because it would require a parsing mechanism. Therefore any strings
implementation will be postponed until we bounce against limitations of the
others.
If A and B are sets and each member of A is also a member of B then we say
that A is a subset of B. And, according to Halmos, this shall be written as:

A ⊆ B or B ⊇ A

This can be implemented in software quite easily. Calling sequences defined by:

3

function SubSet(A,B : Objects) : boolean;
function SubSet(A,B : bitmap) : boolean;

The Axiom of Extensionality states that two sets are equal if and only if they
have the same elements. If A is equal to B then we write:

A = B

And the fact that A and B are not equal is expressed by writing:

A 6= B

Equality of sets A = B can be conveniently defined as: A is a subset of B and
B is a subset of A. Formally:

(A = B) ≡ ((A ⊆ B) and (A ⊇ B))

This too can be easily implemented in software. Calling sequences defined by:

function Equal(A,B : Objects) : boolean;
function Equal(A,B : bitmap) : boolean;

We conclude that the Axiom of Extensionality is piece of an implementable set
theory. And two implementations have been provided already.
A warning is in place, though. Extensionality might be not as simple as it
looks like, at first sight. Especially with complicated sets, where the elements
themselves in turn are sets of sets (towers of sets), the look and feel of a set can
become quite messy. One way to get rid of that messiness, at least in part, is
to adopt the following more detailed rules:
- if x and y are members of a set, so are y and x (x and y can be swapped)
- if x and x are members of a set S, then only x is a member of S (squeeze x)
Example: swap c and d, squeeze d and d, swap b and a, swap b and d. In:

{b, d, c, d, a} = {b, d, d, c, a} = {b, d, c, a} = {a, d, c, b} = {a, b, c, d}

In practice, this means that duplicate elements in a set can be removed (terse
sets). And that a set can be sorted ”in alphabetic order”.
Herewith, chapter 1 of Halmos’ book is covered a great deal. The reader is
encouraged to look up there any details of common naive set theory which
might be missing in our treatment. We are not going to repeat all of the well
known stuff that is common to traditional and implementable set theory.
The chapter ’Specification Axiom’ will be skipped altogether for the moment
being. The reason is that logic and predicates have not been done yet as an
implementable theory, at least not by this author.
It is noted, though, that if theorems are true in an implementable form of
mathematics, then they are also true in a constructive mathematical sense. If
the reverse is also true, then this could provide some important clues.

4

Axiom of empty set

We have arrived in Halmos’ book at chapter III. However, because we are lacking
a ’Specification Axiom’ (a la Halmos chapter II), it is necessary to start with at
least one set which comes out of the blue sky. Fortunately though, the Axiom
of empty set is one of the axioms of Zermelo Fraenkel set theory. The empty set
is a set without elements. The extensionality axiom says that all such sets are
equal. Thus there is only one empty set. The usual symbol for the empty set
is:

∅

But because it’s is a set with no elements (between its curly braces) another
useful notation for this ”empty box” is:

{}

The only property of the empty set to be mentioned in this section is the fact
that it is a subset of any set A:

∅ ⊆ A

How is the empty set implemented in our set theory? As an empty array:

SetLength(empty,0);

And indeed, this is true in theory as well as in practice: the empty array is a
subset of any array.
Another implementation of the empty set in our set theory is a bitmap of zeroes;
the bitmapped implementation is any with no bits up:

.. 0000000000

However, exactly the same bit sequence can be interpreted as a number. What
number does it represent then? Answer: the number zero. Therefore we con-
clude that the empty set is equivalent with zero. Or rather that it is zero. Not
quite perhaps. Let’s stay cautious for the moment being and write the zero with
an overline, to indicate that it is a set, not (yet) a number:

{} = 0

A little philosophy may be in place here. It is noted that the content of the empty
set is emptiness itself. But the empty set is equivalent with zero. Thus zero is
not emptiness itself. It contains emptiness. Emptiness itself is represented in
programming languages by something even more nothing than zero, commonly
called NIL or NULL. End of philosophical note.

Pairing and Union

So far so good about the empty set. Lets proceed with the Axiom of pairing:
for each two arbitrary sets, there is a set that contains them both as a member.
Now we are going to do some real set theoretical stuff. With the empty set alone,

5

we can form the following set, with help of pairing. But the extensionality axiom
says that it is equal to a set with only the empty set as an element. And the
resulting set is not empty !

{∅, ∅} = {∅} = {{}} 6= {}

Maybe it is possible to implement this as array sets, with help of a decent
computer language. But as far as I know, it’s cumbersome with Delphi Pascal.
Empty boxes inside empty boxes. (It’s only until recently that I am beginning
to feel a bit comfortable with the mere idea.)
With the axiom of pairing, we can make singletons, i.e. sets with only one
element in them. But, of course, we can make pairs as well, once a few singletons
are created. For example:

{{}} and {} =⇒ {{{}} , {} }

Another philosophical note is in place, when we are saying that we ”make with
an axiom” and denote this as an implication A =⇒ B. In common mathematics,
the implication =⇒ just means what is defined by a truth table in propositional
logic. But there is another form of mathematics, called constructivism. Within
constructivist mathematics, an implication has a more ”operational” meaning,
like: given A, we can construct B from A. So if we say ”make with an axiom”,
then it is expressed herewith that we adhere to the constructivist meaning of
an implication. End of philosophical note.
The axiom of pairing allows us to create singletons and pairs. But it doesn’t
allow us to create sets with more than two elements. In other to accommodate
with the latter possibility, there is another axiom in common set theory, which
is called the Axiom of Union:
For any set x there is a set y whose elements are precisely the elements of the
elements of x.
Sounds more complicated than it actually is. A simple example. Union says
that, if there is a set {{1, 2}, {3}}, then there is also another set, namely {1, 2, 3}.
It is seen that the former set is a pair and the latter set contains more than
just two elements. We can proceed in this way, forming the pair and the union
{{1, 2, 3}, {4}} =⇒ {1, 2, 3, 4}, and so on and so forth. It is noted once more
that we will not dwell upon the well known set theoretic properties of union
and intersection. For the obvious reason that it can all be found in many books
about common set theory (e.g. Halmos’ book).
So, for the moment being, we end up with only four out of the nine axioms of
Zermelo Fraenkel (and axiom of Choice, eventually: ZFC) set theory:

1. axiom of Extensionality
2. axiom of empty set
3. axiom of Pairing
4. axiom of Union

Still another approach might be feasible: via construction rules. As published
earlier in ’sci.math’ by this author and (to be) polished later by Chas Brown.

6

Hereditary Sets

Convenient references can be found on the Internet:

http://en.wikipedia.org/wiki/Hereditary_Set
http://en.wikipedia.org/wiki/Hereditarily_finite_set

The end result of the preceding section is a construction method for the so called
hereditarily finite sets:

- The empty set is a hereditarily finite set.
- If a1, ..., ak are hereditarily finite sets, then so is {a1, ..., ak} .

Note that adopting this as an axiom schema will not replace the axiom of union,
which is still needed for other situations (in standard set theory, at least). The
axiom of pairing may be replaced by the above generalization, though.
Let’s see what the most simple hereditary sets look like. We found a notation
for the empty set, that distinguishes it a bit from zero:

{} = 0

With the empty set alone, we can make - employing pairing and extensionality
- the singleton that contains it. We give it a name and associate it with the
next natural number:

{ {} } = {0} = 1

With the sets numbered as 0 and 1, we can proceed and create the following
sets - employing pairing and extensionality:

2 = {1} = {{0}} = {{{}}}

3 = {0, 1} = {{}, {{}}}

Next we do:

4 = {2} = {{{{}}}}
5 = {0, 2} = {{}, {{{}}}}

6 = {1, 2} = {{{}}, {{{}}}}

But here we are stuck, because the axiom of pairing forbids us to do something
like this:

7 = {0, 1, 2}

So we need the axiom of union for the first time:

{3, {2}} = {{0, 1}, {2}} =⇒ {0, 1, 2} = 7 = {{}{{}}{{{}}}}

Where it is noted that it would become more and more difficult to decide if a set
has ”equal members” eventually. Especially if we leave out the commas, which
may be essential for readability, but not for definiability. It is thus argued, once

7

more, that the axiom of extensionality might be not so trivial as it looks like.
Things we have found so far can also be written as follows, while skipping the
first four results:

4 = {2}
5 = 1 ∪ 4
6 = 2 ∪ 4
7 = 3 ∪ 4

Where it is noted that actually elements of a Pair (e.g. {1, 4}) are taken for
making a Union with ∪ . Continuing this story, we find:

8 = {3}
9 = 1 ∪ 8

10 = 2 ∪ 8
11 = 3 ∪ 8
12 = 4 ∪ 8
13 = 5 ∪ 8
14 = 6 ∪ 8
15 = 7 ∪ 8

General pattern:
2n = {n}

2n + k = k ∪ 2n where 1 ≤ k ≤ 2n − 1

This is a recursive pattern. There are precisely enough numbers k already
defined with every jump from 2n to the next power of 2.
Preliminary Definition. The Binary successor (x)+ of a set x is defined by the
above pattern. Well, guess that the binary successor of 166 will be 167 ...
We will shortly reveal what the full secret behind this Binary successor is. For
the moment being, it’s important to note that it’s quite different from the
common successor function in mainstream mathematics, which is defined as:
(x)+ = x ∪ {x}.
The mapping of sets upon numbers, denoted by an overline as in x, has not
originally be invented by me (Han de Bruijn), but by a mathematician named
Alexander Abian. One of my key references is the paper ’on the consistency and
independence of some set-theoretical axioms’. The notation is in there all over
the place. But, according to more standard mathematics, the overline should
be written as a mapping. And a bijection, say the ’Abian’ function A, which
maps sets oneto integers, should be defined in the first place. After doing so,
we could proceed with, for example:

A ({{}{{}}{{{}}}}) = 7 and A−1(7) = {{}{{}}{{{}}}}

Chas Brown has proved in ’sci.math’ that the Abian mapping is indeed a true
bijection:

8

http://groups.google.nl/group/sci.math/msg/59ea756bdbccf44c

But instead of all that jazz with bijections and overlines, we will follow an even
more simple minded approach and simply equate sets with numbers. This is
motivated by the fact that sets and numbers share exactly the same bitmaps,
when implemented in a computer’s memory. As will be revealed now.

Bitmapped Sets

In the subsection about the empty set, we have shown that the empty set is
equivalent with an integer number, namely zero (without the overlines here):

{} = 0

We have the following rule of formation for hereditarily finite sets:
- If a1, ..., ak are hereditarily finite sets, then so is {a1, ..., ak} .
In particular, starting with the empty set:

{} = 0 =⇒ {{}} = {0}

But the set containing only a zero can be bitmapped upon a sequence of bits
where only the bit at position zero is up:

.. 0000000001

And the numerical (integer) equivalent of this is the number 1 :

{} = 0 =⇒ {{}} = {0} = 1

We can proceed in this way:

{ {{}} } = {1} = ?

Bitmap:

.. 0000000010

Hence:
{ {{}} } = {1} = 2

Next example:
{ {{}}, {} } = {1, 0} = 3

Bitmap:

.. 0000000011

The general pattern may be formulated as follows:
- {} = 0 is a set (the empty set = zero)
- if A1, ..., Ak are sets, then {A1, ..., Ak} = 2A1 ∪ ... ∪ 2Ak is a set

9

Note. A slightly less accurate notation is employed in the paper by Alexander
Abian, where the ”bitwise or” ∪ is denoted by a plus + . An even better notation
would be: (1← A1) ∪ ... ∪ (1← Ak) , where ← denotes a shift to the left (’shl’
in Delphi Pascal terms).
Every set can formed in this way, through a finite sequence of applications of
the above rules. Examples were:

{{}} = 2{} = 20 = 1
{ {{}} } = 2{{}} = 21 = 2

{ {{}}, {} } = 2{{}} ∪ 2{} = 2 ∪ 1 = 3

This procedure is programmed as a recursive routine in Delphi Pascal. ”Towers”
(powers of two) get a numeric meaning as soon as the empty set is encountered:

function natural(hereditarily : string) : integer;

It is noted that such a routine should always be preceded by a check on correct
syntax, something that has not been done in the present rapid prototyping. (As
a consequence, sets can be processed now which are not really well formed sets)
A somewhat more elaborate example has been published repeatedly in ’sci.math’:

{{{}}{{{}}}{{}{{{}}}}{{}{{}}{{{}}}}} = 166

Where it commas and blanks are left out for unreadability (:-)
We can easily see now what the secret is behind the Binary successor, as men-
tioned in the preceding section. If any set is mapped upon the binary number x,
then the binary successor of that set is the one which is mapped upon the next
binary number x+ 1. Hence the name: binary successor. This is all due to the
fact that sets and numbers share exactly the same bitmaps, when implemented
in a common computer’s memory.

Set mapped Numbers

The inverse procedure will be explained at hand of the 166 number. It’s an
elementary exercise to find the binary representation of it:

166 = 128 + 32 + 4 + 2 = 27 + 25 + 22 + 21 =

2(22+21+20) + 2(22+20) + 221
+ 220

= 2(2220
+220

+20) + 2(2220
+20) + 2220

+ 220

Here the (+) signs could as well have been replaced by (∪) signs, because no
two elements are the same in this representation (of course not). So here comes
our bijection upon the hereditarily finite set:

0 = {} =⇒ 1 = {0} = {{}}
=⇒ 2 = {1} = {{{}}}

5 = {2, 0} = { {{{}}} , {} }
7 = {2, 1, 0} = { {{{}}} , {{}} , {} }

=⇒ 166 = {7, 5, 2, 1} =
{ { {{{}}} , {{}} , {} } , { {{{}}} , {} } , {{{}}} , {{}} }

10

The implementation in Delphi Pascal is again a recursive routine:

function Elements(G : integer) : string;

Calling sequence as in:

test(Elements(166));

Giving as output the (meanwhile well known) result:

{{{}}{{{}}}{{}{{{}}}}{{}{{}}{{{}}}}} = 166

If we define the ”tower” (power of two) as:

function T(N : integer) : integer;
begin
T := 1 shl N;

end;

Then we can arrange the outcome of an 166 experiment as follows:

{ { { }} { { { }}} { { } { { { }}}} { { } { { }} { { { }}}}} = 166

(T(T(0))+T(T(T(0)))+T(T(0)+T(T(T(0))))+T(T(0)+T(T(0))+T(T(T(0))))) = 166

Leading to the following conjecture: the structure of the parentheses with
nesting and adding towers is exactly the same as the structure of the curly
brackets in the corresponding hereditarily finite set representation.
Mathematical note: our definition of a ”tower” function is in agreement with
others, as can be Google’d up with ”tower function” and ”Maple”. We find:

base^^0=1
base^^(height+1)=base^(base^^height)

From which the rest follows. In our case ’base’ = 2 and ’height’ = integer ≥ 0.
The mapping of numbers onto sets is also useful from another point of view. I
don’t claim it will ever become a method with beats others from a viewpoint
of effiency, but representing numbers as sets in array implementations certainly
is an alternative way of doing calculations with very large numbers. A rapid
prototyping package, previously called ZERMELO.ZIP, is published on the web,
for demonstration purposes only:

http://hdebruijn.soo.dto.tudelft.nl/jaar2007/OPERATIE.ZIP

It all works by means of the standard array implementation of sets, as will be de-
fined in the next section. Calling sequence of (main) addition and multiplication
routines defined by:

function plus(a,b : integers) : integers; { Add }
function maal(a,b : integers) : integers; { Multiply }

A little example in footnote style:

53! = 4274883284060025564298013753389399649690343788366813724672000000000000

11

Standard array sets

We have seen that there are several ways to implement a theory of sets with
hardware and software of (not yet) available digital computers. But only four
possibilities out of many shall be employed in this paper. They are:

- a set is an array
- a set is a bitmap
- a set is a string
- a set is a number

Due to the bitmapping, all hereditarily finite sets are equivalent with arrays
of naturals (including zero). For example:

{{{}}{{{}}}{{}{{{}}}}{{}{{}}{{{}}}}} = 166 = {7, 5, 2, 1}

But, due to our axioms, we have nothing else than hereditarily finite sets. So
there can be no other objects than naturals (or zero) within the curly bracket
arrays {a1, a2, ..., an} . Moreover, the Extensionality axiom says that it has
no sense to account for a member of such a set more than once upon a time.
Last but not least, the order of the elements in a set is not at all relevant. As
exemplified with set number 166, the following sets must be the same:

{7, 5, 2, 1} = {7, 5, 2, 5, 1, 7} = {5, 7, 1, 2} = {1, 2, 5, 7}

Effectively, our general TObject arrays have become obsolete with the above.
And ”hereditarily finite set” is just another name for: implementable set.
Definition. The standard implementation of a set, as an array, is an ordered
array, consisting of integers greater than or equal to zero. It is a terse set as
well, meaning that all duplicates have been removed.
With the above definition, sets arrays can be implemented far more efficiently
than in the ”general” TObject case. Sorting and wiping out the duplicates with
set creation, binary search with member finding, these shall be useful methods
to enhance efficiency, indeed. See accompanying source code for details.
Now that sets and naturals have become equivalent, it’s important to note some
other equivalencies. The one for equality (A = B) being more than trivial.
Theorem.

A ⊆ B =⇒ A ≤ B
A ⊇ B =⇒ A ≥ B

It may be not a coincidence that ≤ and ≥ are used with Object Pascal set
implementations as a substitute for ⊆ and ⊇. The reverse is not true, though:
7 < 8 but 7 6⊂ 8.

Complements and Powers

We have arrived at chapter V and more in Halmos’ book: Complements and
Powers. Well, complements in an implementable theory of sets are faced with

12

exactly the same problems as complements in common set theory: there is no
universal set (i.e. set of everything) available, not in theory and not in practice.
Therefore only relative complements can be conceived, as well as implemented.
Let’s take a break and take a look at the way kind of set theory has been imple-
mented in my favorite programming language: Delphi Pascal. The complements
problem has been solved here in a rather obvious way, which is not quite bad
for a start. When seen from the set arrays implementation, all members of an
Object Pascal set have an ”ordinal value” which is in the range [0..255]. This
is essentially the same as in the standard implementation of set arrays, as pre-
sented in this paper. These set arrays map onto bitmaps which are at most
256 bits wide, meaning that the compiler should reserve 256 bits of memory for
each set. Because of this limitation, complements of sets are constructed easily:
reverse all bits 0..255. It leaves no doubt that the elementary set operations,
like union and intersection, are carried out by bitwise or’s respectively and’s.
It’s all very simple and straightforward, once accepted the limitations of a much
restricted 0..255 bits universe.
It is noted that there does not exist a ’typecast’ in Object Pascal that maps
sets onto integers or vice versa, such as:

number := Integer(mySet);
mySet := Set(number);

Not a missed opportunity, I think, but merely a hitherto unknown possibility.
So far so good about complements.

Where the original overline notation for bitmapped sets is retained and it is
assumed that any original set is terse, i.e. it contains no duplicate members.
We have promised that the implementable sets can fill up all feasible computer
memory, without leaving any room for other things. Let’s repeat some easy
facts about common computer memory:

1 Byte = 23 Bit
1 KiloByte = 210 Byte = 213 Bit

1 MegaByte = 210 KiloByte = 223 Bit
1 GigaByte = 210 MegaByte = 233 Bit
1 TeraByte = 210 GigaByte = 243 Bit

Suppose now that we make the following set. It can be done with Delphi Pascal:

procedure Pascal;
{
Sets in Object Pascal

}
var
A : Set of byte;
k : integer;

begin
A := [];
for k := 0 to 42 do
A := A + [k];

end;

Looks rather innocent, and way below the compiler’s boundary of 256 bits wide.
But watch out! The power set is somewhat more powerful:

P ({0, 1, 2, 3, .., 42}) = {0, 1, 2, 3, .., 243 − 1}

Oops! This is a bit sequence of a .. TeraByte, with all bits up, i.e not a single
bit left unused. Thus we we see that our implementable set theory can easily
consume up all contemporary and future computer resources. As promised.

Axiom of Foundation

Let Google be your friend and type ”Axiom of Foundation”. Then we find:
Every non-empty set x contains some member y such that x and y are disjoint
sets. Every non-empty set is disjoint from at least one of its elements.
Some consequences:
- No set is an element of itself
- A set contains no infinitely descending (membership) sequence
- Any set contains a (membership) minimal element
- foundation states that every set can be built up from the empty set
- [...] least useful ingredient of ZFC

14

My first confrontation with the Axiom of Foundation has been when I tempted
to argue that an element should be equal to the set containing only that element.
This has been called the ”ZFC Killer Axiom” (but only by this author):

a = {a}

Adding it to ZFC is indeed disastrous. It’s killing power comes from the fact
that it is in direct conflict with the axiom of Foundation. But it’s much worse
than this:

{} = 0 =⇒ 0 = {0} = 1

Do we have to proceed? One can easily prove herefrom that every number is
zero. Thus a = {a} does not only kill Set Theory, but all Natural numbers as
well - they become zero - and therefore it kills All Mathematics. Who said that
Foundation is generally considered as the ’least useful ingredient of ZFC’ .. ?
Let’s start with a couple of examples, to prove the validity of the axiom within
Alexander Abian’s ”simple model” / our implementable set theory.

S = {0, 1, 2, 3, 4, 5}

And examine Foundation:

0 ∩ S = {} ∩ S = ∅
1 ∩ S = {0} ∩ S = {0} = 1
2 ∩ S = {1} ∩ S = {1} = 2

3 ∩ S = {0, 1} ∩ S = {0, 1} = 3
4 ∩ S = {2} ∩ S = {2} = 4

5 ∩ S = {2, 0} ∩ S = {2, 0} = 5

There is only one element disjoint from the set, namely 0 (because it’s empty
from itself). Therefore let’s drop that first element:

S = {1, 2, 3, 4, 5}

And examine Foundation again:

1 ∩ S = {0} ∩ S = {} = ∅
2 ∩ S = {1} ∩ S = {1} = 2

3 ∩ S = {0, 1} ∩ S = {1} = 2
4 ∩ S = {2} ∩ S = {2} = 4

5 ∩ S = {2, 0} ∩ S = {2} = 4

So again there is only one element disjoint from the set, namely 1 .
The following function, named 2log and coded as below in Delphi Pascal, is
essential for the rest of our argument. The function 2log essentially determines
the position of the leftmost bit in an integer ≥ 0.

15

function log2(n : integer) : integer;
{
Logarithm base 2
---------------- }

var
k : integer;

begin
log2 := 0;
if n < 2 then Exit;
k := 0;
while n > 0 do
begin
n := n shr 1 ; k := k + 1;

end;
log2 := k-1;

end;

Lemma. 2log(n) < n for each integer n ≥ 0
Theorem. The minimal element in a set, when implemented as a natural array,
is always disjoint from the set.
Proof. This is a direct consequence of the above lemma: the leftmost bit
position of an integer ≥ 0 has a numeric value which is always less than the
numeric value of the integer itself.
This completes the proof, of the assertion that the axiom of Foundation is just
a Theorem in our implementable set theory.

Abian Set Theory

One of my key references is the paper ’on the consistency and independence of
some set-theoretical axioms’ by Alexander Abian and Samuel LaMacchia:

http://projecteuclid.org/DPubS/Repository/1.0/Disseminate
?view=body&id=pdf_1&handle=euclid.ndjfl/1093888220

Their sets, denoted with the overline notation, were independently discovered
by myself, as becomes evident from the ’sci.math’ thread named ”Bit mapped
Set Theory”:

http://groups.google.nl/group/sci.math/msg/d0e63882f157ecbe

So ”Bit mapped Set Theory”, unfortunately, turns out to be a re-invention of
the wheel. But, fortunately, Abian’s paper covers so many other interesting
topics, that I feel compensated more than enough. An obvious flaw is spotted
in very first sentence, though: In this paper by means of simple models. Oh no,
mister Abian! The way memory is organized in common digital computers is
not just a ”simple model”. It is the main Laboratory of Applied Mathematics!
Whatever .. The most interesting result in the paper - I think - is: Theorem 1.

16

The axioms of Extensionality, Replacement, Power-Set, Sum-Set, and Choice
form a consistent set of axioms. These are 5 out of the 9 ZFC axioms.

Proof: with overline (bitmapped) sets as a ”model”. It’s no surprise at all
that the Axiom of Infinity (9) turns out to be independent of these 5 axioms.
But, at least to me, it’s a surprise that the following axioms are not even men-
tioned:

6. axiom of Subset
7. axiom of Pairing
8. axiom of Foundation

It’s such a surprise because the proofs presented in the paper are way more
complicated than the proofs which would be needed to include the axioms (6-8)
as well. It’s trivial from the outset (see section ”Pairing and Union”) that the
axiom of Pairing is valid within Abian’s ”model”. In the previous section, it has
been proved that the axiom of Foundation is valid too. Including the axiom of
Subset - at last - must be easy, when compared with the axiom of Replacement.
In the style of Abian’s article, one could say that, given e.g. a set 166 =
{1, 2, 5, 7}, it is possible with a predicate e.g. P (x) = (x is odd) to make a
subset {1, 5, 7}. A more elaborate example could be the following. Suppose we
have a table named A, consisting of two columns, the first one containing 166
and the second one named ’colors’. Note that the first column is commonly
called a ’primary key’ in database environments.

key | color

1 | blue
2 | red
5 | red
7 | blue

Then we can create a subset B = {2, 5}, with an SQL database query:

create table B as (select key from A where color = ’red’);

Anyway, it is clear that the Subset axiom is an implementable piece of Set
Theory. So here comes our Theorem.
The first eight (8) axioms of Zermelo Fraenkel (Choice) set theory (ZFC) form
a consistent set of axioms. The axiom of Infinity (9) is independent of the other
8 axioms. ZFC without Infinity is constructively complete with only the four
axioms of Extensionality, empty set, Pairing and Union. The other 4 axioms
are redundant - that is: they are theorems - for finitary ZFC.
If all of the argumentation for the above Theorem constitutes a mathematically
valid proof, then this does establish, once more, that the proof mechanism of
an implementable (set) theory can be extremely powerful. Cross fertilization
between Theory and Practice, synergy, win win strategy ...

17

Ordered pairs

Ordered pairs are defined in common set theory as Kuratowski ordered pairs:

(a, b) := {{a}, {a, b}}

Elaborate:

{{a}, {a, b}} = {2a, 2a + 2b} = 22a + 22a+2b = 22a
(

1 + 22b
)

Examples:

(0, 1) = 220
(

1 + 221
)

= 2(1 + 4) = 10

(1, 0) = 221
(

1 + 220
)

= 4(1 + 2) = 12

(0, 2) = 220
(

1 + 222
)

= 2(1 + 16) = 34

(2, 0) = 222
(

1 + 220
)

= 16(1 + 2) = 48

(1, 2) = 221
(

1 + 222
)

= 4(1 + 16) = 68

(2, 1) = 222
(

1 + 221
)

= 16(1 + 4) = 80

It is noted that the second example is employed in Alexander Abien’s article,
where it reads:

{(1, 0)} = {{{1}, {1, 0}}} = {{2, 3}} = {12} = 4096

But anyway, it all runs quickly out of hand ! For example:

(3, 4) = 16777472 and (4, 3) = 16842752

So an essential difference between standard set theory and an implementable
theory of sets may be that the latter is far more ”dense”. Such an efficient way
to store ordered pairs in computer memory is e.g. the one published by Daryl
McCullough, in the ’sci.math’ thread ”Coding of ordered pairs”:

Let <i,j> = (i+j)*(i+j+1)/2 + i

The inverse function, the one that splits < i, j > into its components x and y,
can be found as well, though with somewhat more effort. Here is my Delphi
Pascal implementation:

function Daryl(n : integer) : paar;
{
Natural -> ordered pair

}
var
f,K : integer;

18

p : paar; { (p.i,p.j) }
begin
f := (Trunc(sqrt(8*n+1)) - 1) div 2;
K := f*(f+1) div 2;
p.i := n - K; p.j := f - p.i;
Daryl := p;

end;

We see that the Kuratowski ordered pairs are sparsely distributed among the
integers that represent them. And that far more dense implementations are
possible. This turns out to be a common feature with common set theory.

Von Neumann successors

Let’s skim quickly through the remaining chapters of Halmos’ book, until we
arrive at chapter XI: Numbers. And pause there for a moment, at last.
An essential difference between standard set theory and an implementable set
theory is that features of the latter are far more ”dense”. We have seen this
before with ordered pairs. Let’s see how it is working with the so-called von
Neumann ordinals. They are created in Halmos’ book by:

x+ = x ∪ {x}

where + is the so-called successor function. In order to avoid confusion with our
own successor function, previously named the Binary successor, we shall denote
x ∪ {x} as the von Neumann successor.
Start with the empty set.

{} = 0
{} ∪ {0} = {0} = 0 + 20 = 1

{0} ∪ {1} = {0, 1} = 1 + 21 = 3
{0, 1} ∪ {3} = {0, 1, 3} = 3 + 23 = 11

{0, 1, 3} ∪ {11} = {0, 1, 3, 11} = 11 + 211 = 2059

But:
{0, 1, 3, 11} ∪ {2059} = {0, 1, 3, 11, 2059} = 2059 + 22059 = ??

And it’s already ”impossible” to find the next von Neumann ordinal, that is:
within the scope of common 32 bits integer (Delphi Pascal) numbers. Meaning
that these ”ordinals” are also very sparsely distributed among the integers that
represent implementable sets, even more sparsely than ordered pairs. But isn’t
that just the big trick? In standard set theory, the ordinals are defined as an
extremely sparse ”subset” of ”all” sets. It feeds the suggestion that set theory
is thus far more general than number theory and that set theory therefore can
serve as a foundation for number theory.
Quite another picture is emerging with implementable set theory. Each of our
implementable (that is: hereditarily finite) sets uniquely corresponds with a

19

natural number (and {} = 0). And each natural number uniquely corresponds
with an implementable set. Thus our theory of sets does not contain more sets
than it contains numbers. Therefore it’s not suggested that our implementable
set theory can serve as a foundation for the whole of mathematics. It’s rather
suggested that sets are based upon numbers. And that a good old statement
still holds: ’Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk’ (Leopold Kronecker - 1886). It’s the whole numbers that are
foundational for Mathematics, not sets.
The theory of finite ordinals could be labeled as von Neumann’s left hand. The
common von Neumann computer architecture could be labeled as his right hand.
Clearly von Neumann’s left hand didn’t know what his right hand was doing.
Any serious implementation of the former into the latter would be so tremen-
dously inefficient that all computation with naturals would become impossible.

Axiom of Infinity

The Axiom of Infinity: There exists a set N containing 0 and with each element
its successor. Where successor is the von Neumann successor.
The axiom of Infinity, without doubt, is the most suspect of all ZFC axioms. It
has no counterpart, anyway, in our implementable set theory / Abian’s ”sim-
ple model” of sets / the realm of hereditarily finite sets. Abian says that the
Axiom of Infinity, therefore, is independent of the other axioms. But I think
somewhat stronger comments can be made. An obvious remark is that, with
Implementable Set Theory, there is no need anymore to create a set of all Nat-
urals, because they already have a dominant place in the system.
As a fresh start, we could replace the (common set theoretic) von Neumann
successor by our own Binary successor. Surely doing such a thing will challenge
the unexpected and I am not qualified enough to oversee all of the possible
consequences. An example of the latter is the transitivity of ordinals.

11 = {3, 1, 0} =⇒ 3 = {1, 0} ⊂ 11 and 1 = {0} ⊂ 11 and 0 = {} ⊂ 11

So 11 is indeed transitive. But:

6 = {1, 2} =⇒ 2 = {1} ⊂ 6 and 1 = {0} 6⊂ 6

So 6 is not transitive.
But anyway, The axiom of Infinity sounds very much the same with a Binary
successor. And it will breed an offspring which looks very much the same as
with the von Neumann successor, namely, in both cases, the set of ”all” Naturals
(where it might be that the ℵ0 below is not what you think):

{0, 1, 2, 3, 4, 5, 6, 7, 8, . . . , n, . . . ,ℵ0}

Herein the numbers are the naturals as they are implemented - the binary way
- in common digital computers, if with the Binary successor. And they are the
finite ordinals, sparsely distributed among the binary naturals, if with the von

20

Neumann successor. Though there must exist a one-to-one mapping, a bijection
between the binary naturals and the von Neumann ”naturals”, it is clear at the
same time that the latter form a proper subset of the former. With other words:
the two sets of naturals are not identical. This means that the two theories,
common set theory on one hand, implementable set theory on the other hand,
must be clearly distinguished from each other, as soon as the definition of the
Naturals comes into play.
It can be demonstrated, in more than one way, that there are infinitely many
implementable sets. Suppose namely that the number of implementable sets is
finite, then they can be collected into a set. But the latter set is not an element
of itself. This proves by contradiction that the number of implementable sets
certainly is not finite. Hence infinite, in very much the same way as there are
’infinitely many’, meaning ’not finitely many’ prime numbers.
A variation upon the same theme employs the idea that implementable sets are
equivalent with numbers. Therefore:

{0, 1, 2, 3, 4, 5, 6, 7, 8, . . . , n, . . . ,ℵ0} = 2ℵ0+1 − 1

The number on the right hand side is not in the set on the left hand side. Thus
the set of all Naturals does not exist with Implementable Set Theory.
We have seen that the axiom of Specification - also called the Subset axiom - is
a theorem within the realm of Implementable Set Theory. This means that we
do not have to conform with it. Now try to define the following set, while using
unrestricted specification:

{x : x 6∈ x}

We must prove that such an attempt may be successful, because it’s not covered
by the Subset axiom / theorem. By the axiom of Foundation we know that no
set is an element of itself, so this thing must be the set of all implementable sets.
But then the set should contain itself as an element, which is impossible. This
contradiction - much like the infamous paradox by Russell - proves that the set
{x : x 6∈ x}, and hence the set of all implementable sets: does not exist. Which
is equivalent with the above statement that the completed set of all Naturals
does not exist within Implementable Set Theory. This means that the axiom of
Infinity is not so much consistent or inconsistent, but rather completely in vain
with Implementable Set Theory.
Corollary. A final moral of this story is that, any time and any place Actual
Infinity is employed, Russell’s Paradox is just around the corner.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)

21

