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Three Dimensional Elementary Shapes

It is strongly advised to read about the 2-D case first, before proceeding to the
more difficult algebra for three dimensions. It’s in documents on the web, which
can be found at:

http://huizen.dto.tudelft.nl/deBruijn/sunall.htm

Search for titles like ”Triangle Algebra”, ”Quadrilateral Algebra” and ”Five
Point Star”:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/purified.pdf
http://hdebruijn.soo.dto.tudelft.nl/jaar2004/vierhoek.pdf
http://huizen.dto.tudelft.nl/deBruijn/article/SUNA04.NET
http://huizen.dto.tudelft.nl/deBruijn/article/SUNA10.NET

And ”Isoparametric Brick”, ”Seven Point Star” (3-D):

http://huizen.dto.tudelft.nl/deBruijn/article/SUNA47.NET
http://huizen.dto.tudelft.nl/deBruijn/article/SUNA48.NET
http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/belgisch.pdf

Linear Tetrahedron

Let’s consider the simplest non-trivial finite element shape in 3-D, which is a
tetrahedron. Function behaviour inside such a tetrahedron is approximated by
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a linear interpolation between the function values at the vertices, also called
nodal points. Let T be such a function, and x, y, z coordinates, then:

T = A.x+B.y + C.z +D

Where the constants A, B, C, D are yet to be determined. Substitute x = xk ,
y = yk , z = zk with k = 0, 1, 2, 3. Start with:

T0 = A.x0 +B.y0 + C.z0 +D

Clearly, the first of these equations can already be used to eliminate the constant
D, once and forever:

T − T0 = A.(x− x0) +B.(y − y0) + C.(z − z0)

Then the constants A , B , C are determined by:

T1 − T0 = A.(x1 − x0) +B.(y1 − y0) + C.(z1 − z0)
T2 − T0 = A.(x2 − x0) +B.(y2 − y0) + C.(z2 − z0)
T3 − T0 = A.(x3 − x0) +B.(y3 − y0) + C.(z3 − z0)

Three equations with three unknowns. A solution can be found: A
B
C

 =

 x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

−1  T1 − T0

T2 − T0

T3 − T0


It is concluded that A,B,C and hence (T − T0) must be a linear expression in
the (Tk − T0):

T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)

=
[
ξ η ζ

]  T1 − T0

T2 − T0

T3 − T0


See above:

=
[
ξ η ζ

]  x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

 A
B
C


See above:

= T − T0 =
[
x− x0 y − y0 z − z0

]  A
B
C


Hence:

x− x0 = ξ.(x1 − x0) + η.(x2 − x0) + ζ.(x3 − x0)
y − y0 = ξ.(y1 − y0) + η.(y2 − y0) + ζ.(y3 − y0)
z − z0 = ξ.(z1 − z0) + η.(z2 − z0) + ζ.(z3 − z0)
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But also:
T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)

Therefore the same expression holds for the function T as well as for the coor-
dinates x, y, z. This is called an isoparametric transformation. It is remarked
without proof that the local coordinates ξ, η, ζ within a tetrahedron can be in-
terpreted as sub-volumes, spanned by the vectors ~rk − ~r0 and ~r − ~r0 where
~r = (x, y, z) and k = 1, 2, 3.
Reconsider the expression:

T − T0 = ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0)

Partial differentiation to ξ , η , ζ gives:

∂T/∂ξ = T1 − T0 ; ∂T/∂η = T2 − T0 ; ∂T/∂ζ = T3 − T0

Therefore:
T = T (0) + ξ

∂T

∂ξ
+ η

∂T

∂η
+ ζ

∂T

∂ζ

This is part of a Taylor series expansion around node (0). Such Taylor se-
ries expansions are very common in Finite Difference analysis. Now rewrite as
follows:

T = (1− ξ − η − ζ).T0 + ξ.T1 + η.T2 + ζ.T3

Here the functions (1−ξ−η−ζ), ξ, η, ζ are called the shape functions of a Finite
Element. Shape functions Nk have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

N0 = 1− ξ − η − ζ ; N1 = ξ ; N2 = η ; N3 = ζ

So we have two representations, which are allmost trivially equivalent:

T = T0 + ξ.(T1 − T0) + η.(T2 − T0) + ζ.(T3 − T0) : Finite Difference
T = (1− ξ − η − ζ).T0 + ξ.T1 + η.T2 + ζ.T3 : Finite Element

What kind of terms can be discretized at the domain of a linear tetrahedron?
In the first place, the function T (x, y, z) itself, of course. But one may also try
on the first order partial derivatives ∂T/∂(x, y, z). We find:

∂T/∂x = A ; ∂T/∂y = B ; ∂T/∂z = C

Using the expressions which were found for A,B,C: ∂T/∂x
∂T/∂y
∂T/∂z

 =

 x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

−1  T1 − T0

T2 − T0

T3 − T0


It is seen from this formula that one must determine the inverse of the above
matrix first. Then add up the rows of the inverted matrix and provide the
sum with a minus sign, in order to find the coefficients belonging to T0. The
result is a 3× 4 Differentiation Matrix, which represents the gradient operator
∂/∂(x, y, z) for the function values T0,1,2,3 at a linear tetrahedron.
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Seven Point Star

Consider the well known seven point Finite Difference star:

The Finite Difference grid labels (i±1, j±1, k±1) are replaced by Finite Element
node numbers. Function values (T0, T1, T2, T3, T4, T5, T6) can be defined then at
the nodal points. These values can be interpolated by a (Finite Element like)
polynomial, which is defined by:

T (ξ, η, ζ) = a0 + a1.ξ + a2.ξ
2 + a3.η + a4.η

2 + a5.ζ + a6.ζ
2

Specify T (ξ, η, ζ) for the nodes (0, 1, 2, 3, 4, 5, 6) :

(0, 0, 0), (−1, 0, 0), (+1, 0, 0), (0,−1, 0), (0,+1, 0), (0, 0,−1), (0, 0,+1)

This results in 7 equations for the 7 unknowns (a0, a1, a2, a3, a4, a5, a6):

T0 = a0 ; T1 = a0 − a1 + a2 ; T2 = a0 + a1 + a2

T3 = a0 − a3 + a4 ; T4 = a0 + a3 + a4

T5 = a0 − a5 + a6 ; T6 = a0 + a5 + a6

From which it follows that:

a0 = T0 ; a1 = (T2 − T1)/2 ; a3 = (T4 − T3)/2 ; a5 = (T6 − T5)/2

a2 = (T2− 2T0 +T1)/2 ; a4 = (T4− 2T0 +T3)/2 ; a6 = (T6− 2T0 +T5)/2

These are the well known finite difference schemes for the zero’th, first and
second order partial derivatives at the seven point star. By substitution of the
a’s, the function T is expressed as follows:

T (ξ, η, ζ) = T0 +
T2 − T1

2
ξ +

T2 − 2T0 + T1

2
ξ2

+
T4 − T3

2
η +

T4 − 2T0 + T3

2
η2

+
T6 − T5

2
ζ +

T6 − 2T0 + T5

2
ζ2
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Which can be rewritten as:

T (ξ, η, ζ) = (1− ξ2 − η2 − ζ2)T0

+
ξ2 − ξ

2
T1 +

η2 − η
2

T3 +
ζ2 − ζ

2
T5

+
ξ2 + ξ

2
T2 +

η2 + η

2
T4 +

ζ2 + ζ

2
T6

Sic! Here we have found Finite Element Shape Functions for the seven point
Finite Difference Star! They are:

N0(ξ, η, ζ) = 1− ξ2 − η2 − ζ2

N1(ξ, η, ζ) =
1
2

(−ξ + ξ2) ; N2(ξ, η, ζ) =
1
2

(+ξ + ξ2)

N3(ξ, η, ζ) =
1
2

(−η + η2) ; N4(ξ, η, ζ) =
1
2

(+η + η2)

N5(ξ, η, ζ) =
1
2

(−ζ + ζ2) ; N6(ξ, η, ζ) =
1
2

(+ζ + ζ2)

Until now, the coordinates (ξ, η, ζ) actually have been interpreted as global
Cartesian coordinates. But it’s more advantageous to look upon them as local
coordinates. Then a (Finite Element) isoparametric mapping (ξ, η, ζ)→ (x, y, z)
from the local to the global coordinate system (x, y, z) can be defined, as follows:

x = N0x0 +N1x1 +N2x2 +N3x3 +N4x4 +N5x5 +N6x6

y = N0y0 +N1y1 +N2y2 +N3y3 +N4y4 +N5y5 +N6y6

z = N0z0 +N1z1 +N2z2 +N3z3 +N4z4 +N5z5 +N6z6

So now it has become clear why we adopted the (ξ, η, ζ) notation in the first
place. For any other function f(x, y, z) we can write:

f = N0f0 +N1f1 +N2f2 +N3f3 +N4f4 +N5f5 +N6f6

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch :-)
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