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Let E be a set, E’ one of its elements, E” any element of E’, and
so on. I call a descent the sequence of steps from E to E’, E’ to
E", etc. .... I say that a set is ordinary when it only gives rise
to finite descents; I say that it is extraordinary when among its
descents there are some which are infinite.

—Mirimanoff (1917)
Les antinomies de Russell et de Burali-Forti
et le probléme fondamental de la theorie des ensembles
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Foreword

To my way of thinking, mathemtical logic is a branch of applied
mathematics. It applies mathematics to model and study various
sorts of symbolic systems: axioms, proofs, programs, computers,
or people talking and reasoning together. This is the only view of
mathematical logic which does justice to the logician’s intuition
vilav10g1c reaily 1§a ferdr; nov*jist e utnonr o1 several urfelated
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of set, the conception that lies at the heart of this book. Aczel
returns to his stagtime.naintinthafinel.chanter, Af.thishaaki,.
Before learning of Aczel’s work, I had run up against similar

difficulties in my work in situation theory and situation seman-
tics. It seemed that in order to understand common knowledge
(a crucial feature of communication), circular propositions, vari-
ous aspects of perceptual knowledge and self-awareness, we had
to admit that there are situations that are not wellfounded under
the “constituent of” relation. This meant that the most natural
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Preface

This work started out as lecture notes for a graduate course called

“Qato and Dranncanc?” mivraw®
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Introduction

A non-well-founded set is an extraordinary set in the sense of
Mirimanoff.* Such a set has an infinite descending membership
sequetice; t'e: an infinite sequence of sets, consisting of an ele-

natics. Sometimes a stronger view is expressed. According to
\at view there is only one sensible coherent notion of set. That is
e iterative conception in which sets are arranged in levels, with
1e elements of a set placed at lower levels than the set itself. For
e iterative conception only well-founded sets exist and FA and
ie other axioms of ZF(C are true when interpreted in the itera-
ve universe of pure sets. There has been yet one more reason

* See the epigraph.
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why FA has been routinely included among the axioms of ax-




Introduction XX

can be treated in a uniform manner and this leads to the formu-
lation of an axiom AFA™ relative to the definition of a suitable
relation ~ to express the criterion of set equality. This is pre-
sented in Chapter 4. The suitable relations ~ are called regular
bisimulation relations and range between two possible extremes.

One extreme is the maximal bisimulation relation on the uni-
verse of sets. This relation gives the most generous criterion for
set equality which roughly states that sets are equal whenever
pOSSIDIE, Keeping 10 mina 'viat 11 two sets are equal then any el-
ement of one set must be equal to an element of the other set.
It is this relation that gives rise to the axiom AFA. There is
the other extreme of a strengthening of the extensionality crite-
: t two sets are equa

if they are isomorp n a suitable sense. gives rise to an
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relationship between Milner’s ideas and the axiom AF A and non-
well-founded sets.

Another major area of application for the notion of a non-
well-founded set and the axiom AFA is to situation theory. Jon
Barwise realised the significance of A FA for situation theory while
I was giving the lectures that form the origin of this book. I have
chosen not to present any of the details of this application here.
Instead, in chapters 6 and 7, I have focussed attention on what
I consider to be some of the fundamental general mathematical
ideas that are being exploited when using AFA. Some of the ideas
and terminology have been presented in an elegant and appealing
way in the book The Liar, by Jon Barwise and John Etchemendy,
and I have taken the opportunity to incorporate those ideas into
this book.



Part One

The Anti-Foundation Axiom






1 | Introducing the Axiom

Pictures Of Sets

Sets may be pictured using (downward growing) trees. For ex-
ample if we use the standard set theoretical representation of the
natural numbers, where the natural number n is represented as
the set of natural numbers less than n, then we_ have the following,
pictures for the first few natural numbers:

O
—
(S}
w

More generally pointed graphs may be used as pictures of




4  The Anti-Foundation Axiom

of EDGES, each edge being an ordered pair (n,n’) of nodes. If
(n,n’) is an edge then I will write n — n’ and say that n’ is a
CHILD of n. A PATH is a finite or infinite sequence

ng—n;g —nNg — ...

of nodes ng, n1, n2, ... linked by edges (ng, n1), (n1,n2), .... A
POINTED GRAPH is a graph together with a distinguished node
called its POINT. A pointed graph is ACCESSIBLE if for every
node n there is a path ng — n; — --- — n from the point
ng to the node n. If this path is always unique then the pointed
graphis a TREE and the point is the ROOT of the tree. We will
use accessible pointed graphs (apgs for short) as our pictures.
In the diagrams the point will always be located at the top. A
DECORATION of a graph is an assignment of a set to each node
of the graph in such a way that the elements of the set assigned
to a node are the sets assigned to the children of that node. A
PICTIRE.Af.A_set.is an.ang which has_a_decoration_in.which.thase
set is assigned to the point.

Notice that in our examples there is only one way to decorate
the apgs. For example the last diagram must be decorated in the
following way.

The node labelled 0 has no children and hence must be assigned
‘the emntv set. i.e. 0. in anv decoration. The centralirrd- lus~
as only child the node labelled 0. Hence in any decoration the

central node must be assigned the set {0}, i. e. 1. Contlnumg in
this wav we are inevitahlv led ta the ahavea:
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This result is proved by a simple application of definition by
recursion on a well-founded relation to obtain the unique function
d defined so that

dn = {dn' |n — n'}
for each node n of the graph. The decoration d assigns the set
dn to the node n. Note the obvious consequence.

1.1 Corollary:
Every well-founded apg is a picture of a unique set.

Which sets have pictures? There is a simple answer to this
question.

1.2 Proposition: Every set has a picture.

To see this we will associate with each set a its CANONICAL
PICTURE. Form the graph that has as its nodes those sets that
occur in sequences ag, ai, a2, ... such that

. €Eax€a €ap9=a

and having as edges those pairs of nodes (z,y) such that y € z.
If a is chosen as the point we obtain an apg. This apg is clearly
a picture of a, the decoration consisting of the assignment of the
sey 2 10 eatn modew: "noveVnas ths dhisuuctiondires fot reqiire
the set a to be well-founded.
Every picture of a set can be unfolded into a tree picture of
the $ame set. (1VEN an apg we may Iorm tne tree whose nodes
are the finite paths of the apg that start from the point of the
apg and whose edges are pairs of paths of the form

(¢ — -+ —a,a0— -~ —a—ad).

The root of this tree is the path ag of length one. This tree
is the UNFOLDING of the apg. Any decoration of the apg induces
a decoration of its unfolding by assigning to the node ap —

- — a of the tree the set that is assigned to the node a of
the apg by the decoration of the apg. Thus the unfolding of an
apg will picture any set pictured by the apg. The unfolding of
the canonical picture of a set will be called the CANONICAL TREE
PICTURE of the set.

Our discussion so far has been intended to motivate the fol-
lowing axiom:
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The Anti-Foundation Axiom, AFA:
Every graph has a unique decoration.

Note the following obvious consequences.

e Every apg is a picture of a unique set.
e Non-well-founded sets exist.

In fact any non-well-founded apg will have to picture a non-well-
founded set.

Examples of Non-Well-Founded Sets

= - , PR . ana - . ~BETD
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if only the infinite expression on the right hand side had an in-
dependently determined meaning!

The infinite tree above and the infinite expression associated
with it might suggest that in some sense {2 is an infinite object.
But a moment’s thought should convince the reader that €2 is as

nnite an ooject’ as one could wish. After all it does have a finite
picture. We may call sets that have finite pictures HEREDITARILY
FINITE sets.

Q has many pictures. In fact we have the following charac-
terisation.

1.4 Proposition: An apg is a picture of Q if and only if every
node of the apg has a child.

Proof: Assume given a picture of 2 with root a. Let d be a
decoration of the picture such that da = 2. Now if b is any node
of the picture there must be a patha =ag — --- — a, = b so
that db = da,, € --- € dag = da = 2. As Q is the only element
of Q it follows that db = . As Q has an element it follows that
b must have a child. Thus every node of the picture must have a
child.

Conversely assume given an apg with the property that every
node has a child. Then the assignment of 2 to each node of the
apg is easily seen to be a decoration of the apg, so that the apg
is a picture of Q. =]
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denote a picture of some set a. Then

is a picture of the unique set a* such that
a* = {a,a"}.

If a = 0 we get the special case in example 1.5. Again the above
equation can be ‘unfolded’ in the obvious way.

Let us now consider the special case when a = Q. Q" is the
unique set such that Q* = {Q,Q*}. But Q@ = {1} = {Q,Q}.
Hence we must conclude that Q* = Q. Of course this is also clear
from the characterisation of pictures of §2 given earlier.

1.7 Example: The ordered pair of two sets is usually repre-
sented as follows:

(a,0) = {{a}, {a, b}}.

So the equation
z = (0;2)

becomes

z = {{0},{0,}}.

This equation in one variable = is equivalent in an obvious
sense, to the following system of four equations in the four vari-
ables z, y, z, w.
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Now these equations hold exactly when the following diagram is
of a correctly decorated apg.

Hence by AFA the above system of four equations has a
unique solution and hence the original equation

& =10,2)

has a unique solution with picture

“Unfolding” this equation we get

Tr = (0, (07 (0) wrd )))

1.8 Example: As in example 1.6 the previous example may be
generalised to show that for any set a the equation z = (a,z) has
a unique solution = = (a,(a,(a,...))).

More generally still, given any infinite sequence.of sets ag, a1,
a2, ... we may consider the following infinite system of equations
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in the variables xg, 1, T2, T3, ...

T = (ao, 1)
T = (a1,$2)

zo = (ag,3)

It should be a straightforward exercise for the reader to show

that this system of equations has a unique solution. Infinite ex-

presSfous™or this unique solution can be obtained by ‘unfolding’
the system of equations to get

zo = (ao, (a1, (az,...)))
z1 = (a1, (a2, (as,...)))
9 = (G'Zy (a'3) (a'4’ .. )))

This and other examples can be treated even more simply
using the following strengthening of AFA. A LABELLED GRAPH
is a graph together with an assignment of a set a| of LABELS to
each node a.

A LABELLED DECORATION of a labelled graph is an assign-
ment d of a set da to each node a such that

da={db|a—b}Ua|.
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Now given sets ag, a1, az2,... we can obtain the sets z, such
y @1,
dhatupy =, H1ye0F = U] L. .. 10 the t6liowing way Con-

D thee: EBabead bed. ant-Soorsdanion aabom bt o e the poicoe T
bedled dacoration of the Ebwded aragh.
ey Forow =2, L ...

s nj = {8130 + Li} [
#1120 + L = {90930 4 20 o |
Henox if xy =d)2%) ten

o= [ — L] {ca])
= {{Fz+1-0m} fa}}

# ]
= By T 47

Jor carch 5. Berre we besve olrixined Dy desired =615 z,,. Ther
mmicpeeress sasily o brws oo the woiqeeess of &

There & an>vex more poeerfal techoigee Cyas ca be msed o
deal wikh this ard other zomples T teckoicoe arobes cChe
frombaticr of 3 TestH assenier thet evey systen of egeticos
of & vertair tvpe bhoe & poiqer soletioe. W can ther simply
apply e resul directly bo each eoom ple withonrt e nesd Far aogy
e pesult will ‘e celled the solotice bmma bedow. I ardes bo
bo consader an expansice o the imirverse of pore sets that we
bewe been oonsiderine so Bo. Pure sets ooly berm sets s
elemenis ard those sets are alse pare. The expansion of the:
o perse: ionrdnes: vz add oo of aorr 5 amd sets bolk oot of ke
Abras e objerns thet are 23 sems and are 3ot oade op of ses.

iy iy, i ekl wdy o s se ket TR sy, ol
They can be medl in the farwaiion of vels. Ser=iBarvis 5]
S o diisoessics OF the: formeaBead i off sct thesry willh abosos Tn
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up is analogous to the construction of a polynomial ring from a
ring by adjoining indeterminates and adding all the polynomials
in those indeterminates with coefficients taken from the ring. It
will be convenient to assume that we have a plentiful supply of
atoms. So we assume that for each pure set ¢ there is an atom z;,
with z; # z; for distinct pure sets ¢,j. If X is a class of atoms
then we call sets that may involve atoms from the class X in their
build up X-SETS. The solution lemma will applv to a system of

1Irom the rignt’ nana I'the origi ste f e by
substituting b, for I rg \

to the genera

family m = (b )zex 0 each z ¢ ucl it
for each z € X

HCF(‘.‘ for each X-set a, the set ma is tha set that is obtalned
from a by substituting r each occurence of an atom z in the

vtion characterised in

build up of a. So 7 is the
the following result.

Substitution Lem:
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We can now state the result we have been aiming at.

Solution Lemma:
If a; is an X-set for each atom z in the class X of atoms then

the system of equations
z =g (z€X)

has a unique solution; i.e. a unique family of pure sets T =
(bz)zex such that for each z € X

b, = %oy,

The above informal discusion of the solution lemma seems
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Xnt1=Ulem |z € X}
for all £ € M, each X, is a set, the set of those

at end paths in M of length n starting from the
nodes of Ma form the set | J,, X».

ch apg Ma has a unique decoration d, so that Ma
e of the set d,a. For each a € M let da = d,a.

hat d is the umque decoratlon of M. First observe
AL Al e = T .
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Note that the assigment of the set 7(2,a) to each a € V is a
decoration of the system V so that by AFA n(2,a) = a for all
a € V. Hence if we let Ta = m(1,a) for a € M then, for a € M,

ra={rb|a—bin M}UalM,

so that 7 is a labelled decoration of the labelled system M.

For the uniqueness of 7 suppose that 7’ is a labelled deco-
ration of the labelled system M. Then 7’ is a decoration of the
system M’ where

m'(1,a) =1'a fora € M,

m(2,a) =a fora€V.
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(2) Let M’ be the system having the same nodes as M, and all
the edges of M together with edges a — a, whenever a € M
and = € a]M. By theorem 1.9 M’ has a unique decoration
¢. So for eacha € M

wa={pb|la—bin M}U{pa; | z € alM}.

Let mz = pa, for £ € X. Then ¢ is a labelled decoration of
the labelled system M so that ¢ = 7 and hence 7z = pa,
for z € X. For the uniqueness of 7 let 7’ : X — V such that
7'z = #'a; for £ € X. Then observe that 7/ is a decoration
of M’, so that # = ¢ and hence 7'z = #'a; = pa, = 7z for
z€X.Son =m. ]

Proof of the Substitution and Solution Lemmas

The informal presentation of the substitution and solution lem-
mas that we have given cannot be made rigorous in a direct way
on the basis of the axiom system for set theory that we have been
implicitly working in. Rather than modify this axiom system, so
as to be appropriate for the expanded universe with atoms, we
will give a model of the expanded universe within the universe of
pure sets. We will use the pure sets z; = (1,%) to be the atoms in
the model and will call them *-atoms. The sets in the model will
be called *-sets and will be certain pure sets of the form (2,u). If
a = (2,u) then let a* = u. The elements of a* will be called the
x-elements of a. The class of *-sets is defined to be the largest
dass of spts of the form (2 1), surh: that Rk v~RIRment. of, 2 *-sf
is either a x-atom or else is a *-set. We will not stop here to
show the existence of such a largest class, but refer the reader to
theorem 6.5. Given a class X of *-atoms we also define the class
of X-sets to be the largest class of *-sets such that every %-atom
in an X-set is in X. Now the X-sets form the class of nodes of a
labelled system M, where for each node a

apyy = Mnat,
a|M=XnNa"

We may apply the two parts of theorem 1.11 to this labelled
system to obtain proofs of the substitution and solution lemmas,
aype thad it haright handusidand the chazasterising ecqudtion
for 7a in the substitution lemma, the set a must be replaced
by the set a*. This slight revision of the substitution lemma is
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need¥d as we are not really expanding the universe but only using
a model of an expanded universe.






2 | The Axiom in More Detail

The anti-foundation axiom is obviously equivalent to the con-
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solutions. This example shows that if one is to attempt to for-
mulate a sensible notion of non-well-founded set it is worthwhile
to strengthen the extensionality axiom.

2.1 Exercise: Show that the foundation axiom implies AFAs
and the negation of AFA;.

For sets a,b let a = b if and only if there is an apg that is a
picture of both a and b.

2.2 Exercise: Show that AFA, is equivalent to:

a=b = a=0b forall sets a,b.

Bisimulations

What sort of relation is =? To start to answer this question we
need the following fundamental notion. A binary relation R on
the system M is a BISIMULATION on M if R C R™, where for
a,be M

aR'b < Vrecaydyeby xRy & Vy€byIz€apy Ry.

Observe that if Ry C R then Rf C R™; i.e. the operation ()7 is
monotone.

2.3 Exercise: Show that the relation = is a bisimulation on V.

In general a system M will have many bisimulations. We will
see that = is the maximum bisimulation on the system V. A
maximum bisimulation exists on any system.

2.4 Theorem: There is a unique maximum bisimulation =ps on
each system M; i.e.

(1) = is a bisimulation on M,
(2) If R is a bisimulation on M then for all a,b € M

aRb = a=pmb.

In fact

17 1 _°

w=y v &= wPb Tor some small pisimulation i on M.
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The relation =) is also sometimes called the weakest bisim-
ulation or largest bisimulation on M.

Dinnd. Tab —. - hin AdaLand an ahineen  KTa cwn-imm®
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Now observe that d; and dz are both decorations of My, where
for (a,b) € My
dl (a, b) = a,

d2(a,b) = b.

So, if aRb then the apg My(a,b) is as=picture of both a and b,
using the restrictions of d; and dy to the apg. Hence if a Rb then
a=h o

The facts in the following exercise will be useful in show-
ing that the maximum bisimulation relation on a system is an
equivalence relation.

2.6 Exercise: Show that if M is a system then
(i) For alla,be M

a =}t,[ b < ay =buy,
(ii) If R C M x M then
(R = ('Y,
(111) If R1,Rs C M x M then
R{ | Ry C (Ri| Ry)™.
2.7 Proposition: For each system M the relation =ps is an
equivalence relation on M such that for all a,b € M

ELb < a=pub

Proof: That =) is an equivalence relation is an easy application

of the previous exercise. As =js is a blslmula.tlon we have the
2o 12 HﬂE‘ . S v
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A system M is EXTENSIONAL if, for all a,b € M
apy =by = a=0.
It is STRONGLY EXTENSIONAL if, for all a,b e M
a=pmb = a=0b
2.9 Exercise: Show that
AFA; <= AFAS™,

where AFAS™ is:
Every extensional graph has at most one decoration.

Observe that by (i) of exercise 2.8 every strongly extensional
Svstem iswtnnc;nno] NAata that hyer tha aviancianalitxr aviam +tha

o Ay BN SUNESEASSIAE A L4 2 AN 0LV Ty M. LGNS X ErCISe
2.5 a = b so that there is an apg Gn and decorations d; and ds
of G such that din = a and dan = b. By AFA3 d; = da so that
a =b. Thus V is strongly extensional.

Conversely let V' be strongly extensional and let d; and d3 be
decorations of a graph G. If ¢ € G then diz = daz, as Gz is a
picture of both d;z and d2z. Hence, by exercise 2.5 d1z =y dax,
so that dixz = daz, as V is strongly extensional. Thus d; = ds so
it werkaVe proved AFAj3. o

System Maps

A SYSTEM MAP from the system M to the system M’ is a map
m: M — M’ such that fora € M

(ra)mr = {nb | b€ anm}.
If 7 is a bijection then it is a SYSTEM ISOMORPHISM.

2.11 Example: A system map G — V', where G is a graph, is
simply a decoration of the graph.

2.12 Exercise: Show that systems and system maps form a
(superlarge) category.
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The clase relationshin which evists hsérween' Hi5imilidiions and
system maps is illustrated by the following results.

2.13 Proposition: Let m,m : M — M’ be system maps.
(1) If R is a bisimulation on M then

(m1 X )R = {(m1a1,m2a2) | ajRas}

is a bisimulation on M.
(2) If S is a bisimulation on M’ then

(71’1 X 7T2)_IS d:ef {(a1,az) eMx M ’ (7r1a1)S(7r2a2)}

Is a bisimulation on M.

Proof:

(1) Let S = (m1 x m2) R and let b;.Sby and b} € by ;. Then there
are ai, az such that ajRaz and b1 = ma1, by = mas. As
b} € (may)r there is a} € (a1)p such that b] = 7ma}. As R
is a bisimulation on M there is aj € (a2)as such that o/ Ra).
Now if b, = ma), then b} Sb; and by € (b2)as. Thus we have
proved that if b;Sb2 then

Vb, € (b1) e 3by € (bo)ap b’le’Z.
Similarly, if b;Sbe then also
VbIQ € (bQ)M/ 3()’1 € (b)) bQSbé

Thus S is a bisimulation on M’.

(2) Let R = (m x m2)~'S and let a; Ray and a} € ay. Then
(m1a1)S(mea2) and mia) € (ma1)py. As S is a bisimulation
on M’ there is by € (maaz)y such that (ma})Sby. So b, =
Taay for some ay € (a2)p. So aRa) for some dfy € (a2)m.
Thus if a; Ras then

Vaj € (a1)p 3ah € (a2)p @) Rab,
and similarly we get

Vay € (a2)pr 3a) € (a1)m a) Rab.
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Proof: The essential problem is to define a map 7 with domain
the system M such that for a1,a; € M

a] =M a9 < Ta] = Tay.

For small M the standard definition of 7 in terms of equiva-
lence classes would work. In general a strong form of global choice
would be needed to pick a representative from each equivalence
class. Here we shall give an argument that only uses the local
form of AC. For each a € M the set of nodes of the apg Ma is in
one-one correspondence with an ordinal, and the correspondence
induces an apg structure on the ordinal. The resulting apg will
be in the universe of well-founded sets and will be isomorphic to
Ma. For each a € M let T, be the class of apgs in the well-
founded universe that are isomorphic to Ma' for some o' € M
such that a =pr a’. By the above each class T, is non-empty and
hence has elements of minimum possible rank in the well-founded
universe. Let ma be the set of such elements of T,. Note that
if a1 =m a2 then T,, = T,, so that ma; = maz. Conversely if
a1,a2 € M such that ma; = maz then there must be an apg in
both T,, and T;,. Hence there must be aj,ay € M such that
a1 =um @}, a2 =um ap and Ma) = Maj. By exercise 2.8 a} =y ab
so that a1 =7 as. O

2.18 Exercise: (due to Dag Westerstahl) Show that
AFA; <= AFAS™,

where AFAS™ is:
Every extensional graph has at least one decoration.

2.19 Theorem: The following are equivalent for each system M.

(1) M is strongly extensional.

(2) For each (small) system My there is at most one system map
Mo — M.

(3) For each system M' every system map M — M’ is injec-
tive.

Proof: We first show that (1) and (2) are equivalent. Assuming
(1), let m,m : My — M be system maps. By proposition
L0800 (1 X ma\ =, ) 18 a isimwiation #£on M7 1E'm € My
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then (w3m)R(mem) so that mym-=p wam and hence mym = mwam,
as M is strongly extensional. Thus m; = 73 and we have proved

(2). Now assume (2) and apply exercise 2.14, where R is the
bisimulation =z, to construct the system My and system maps
w1, T ¢ Mg — M. By (2), m1 = mg, so that whenever a =7 b
then (a,b) € My and a = m(a,b) = m2(a,b) = b. Thus M is
strongly extensional; i.e. (1).
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2.21 Proposition:

LAEAe > FEvery canonical picture js stronely exte, mmsd

Exact Pictures

We will call an apg an EXACT PICTURE if it has an injective
decoration, i.e. distinct nodes are assigned distinct sets by the
decoration. An alternative way to state this is to say that the
apg is isomorphic to a canonical picture. Proposition 2.21 can be
reformulated as stating that

AFA, <= Every exact picture is strongly extensional.
2.22 Proposition:

AFA1 <= Every strongly extensional apg is an exact picture.

Proof: Assume AFA;. Let G be a strongly extensional apg. By
AFA; G has a decoration d. So d : G — V is a system map.
By (1) = (3) of theorem 2.19 d is injective, so that G is an exact
picture.

Conversely, let us assume the right hand side of the propo-
sition and show that each graph G has a decoration. Given the
graph G we may form an apg G’ by adding a new node * and
new edges (*,a) for each node a of G. Now let 7 : G’ — G” be
a strongly extensional quotient of G’. Then G”(wx) is strongly
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wheren > 0 and s3, ..., s,, t are variables or individual constants.
The natural semantics for the variant logic is to use structures
A= (A,R,...,c*,...) where A is a non-empty set, R C A" x A
and c? € A for each individual constant c. Here At =J, ., A"
Let us call such a structure a KANGER structure. The standard
completeness theorem will obviously carry over if this seman-

tics is used. Kanger’s idea is to modify the semantics by only
using ‘normal’ Kanger structures in the definitions of logical va-
lidity and logical consequence. A NORMAL Kanger structure is a

structure
A= (AR,...,c4..)

where

R={(ba) € AT x A|b€a}.

At first sight the restriction to normal structures may appear
severe in view of the consistency of such sentences as

g3z ((z,2) & @),

In fact Kanger still succeeds in proving the variant logic complete
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In order to apply AFA; define a graph G as follows. Let A be
the smallest set such that {0} x A C A and {1} x (4 x A) C A.
Choose a € On so that there is a bijection f : A — (a — {0}).
Of course this requires AC. The nodes of G are the elements of
the set AU ({2} x @). G has edges of the following forms:

1) 28— @2y fory<f<a

(2) (1,(z,y)) = u for z,y € A and u € {z,y}

(3) (0,a) — mr((0,a1),...,(0,a,)) for ((ai,...,an),a) € R
(4) (0,a) — (2, fa) fora e A

To define 7, : A” - Aforn=1,2,... let

7T(:l:, y) = (1’ ((1’ (:Z:, :B)), (1’ (:l:, y))))
Now let myz =z for z € A and let
Tnt1(Z1y - -+ s Toy Tny1) = T(Tn(Z1,. - .y Zn), Tnt1)

for z1,...,Tn, Tne1 € A.

By AFA; G has a decoration d. Note that the subgraph of G
obtained by restricting to the nodes in {2} x «, is well-founded,
having edges only of the form (1). It follows from the uniqueness
part of Mostowski’s collapsing lemma that

d(2,8)=p forall 8 <.
Also note that for all z,y € A.
d(1, (z,y)) = {dz, dy}
and hence
d(n(z,y)) = (dz, dy).
It follows that for all zi,...,z, € A
d(mn(z1,...,20)) = (dz1, ..., dzy).

Now let ¥a = d(0,a) for a € A. Then by considering the edges
of G of the forms (3) and (4) we see that for alla € A

(*)  vYa={(¥a1,...,va) ]| ((a1,...,an),a) € R} U{fa}.
We now make a sequence of observations:
(i) dz # 0 for all z € G except z = (2,0).
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(i) O & dz for all z € A.
(iii) dz € On for all z € A.

(iv) fa is the unique ordinal in va for each a € A.
(v) 9 is injective.

By (%) and (v) it follows that ¢ : (4, R) = (B, S) where (B, S)
is the normal Kanger structure with B = {¢a | a € A}. O







3 | A Model of the Axiom

As in the previous chapters we shall work informally in the frame-
work of the axiomatic set theory ZFC~. The aim of this chapter
is to form a class model of our set theory, including the new axiom

AFA.
Complete Systems

Given a system M an M-DECORATION of a graph G is a system
map G — M.

3.1 Example: A V -decoration of G is simply a decoration of G.

M is a COMPLETE system if every graph has a unique M-
decoration. Note that by theorem 2.19 every complete system is
strongly extensional. Also note that if M is strongly extensional

mend Avcamer Admanimler accbamal A al cma bl han v A AR
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e For each full system M’ there is a unique system map
M — M.
e M is well founded.
o M= wa.

& wiil'grve vwo udiférein prouvi$ o “uite exy tesult.

3.7 Proposition: Fach complete system is full.

Proof 1: Let £ C M be a set, where M is a complete system

identity map is clearly the unique M-decoration of Gy. Sodz = x

_mmm*- [_
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Hence from (), for all z € powM

(hz)m = {hym | y € z}
={y|y ez}
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Now let f = {(z,dz)™) | z € ap}™. Then f € M and it is a
routine matter to check that

M = “f is the unique decoration of the graph c”.

Thus we have proved that in M every graph has a unique deco-
ration; i.e. M 1s a model of AFA." ™' O
3.9 Exercise: Let M be a full system. Show that
(i) M is a model of FA iff M is well-founded.
(ii) M is a model of AFA; iff every graph has an M-decoration.
({ii)* #2718 a moaéi'or ATAY 1) 18 sttongry excéiisional.
(iv) M is a model of AFA iff M is complete.

As an immediate consequence of part (iv) of this exercise and
theorem 3.8 we get the following result.

3.10 Theorem: ZFC™ + AFA has a full model that is unique
up to isomorphism.






Part Two

Variants of the
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Hint: Observe that if w : M1 — Mo is an injective system map
then for a € M;

(7} Mia) : Mia = My(ma).

~-Complete Systems

A system M is a ~-COMPLETE system if it is ~-extensional and
every ~-exceusioual ' grapu tas an M-decoration. Note that by
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We can now show that M’ is ~-extensional. Asm: M — M’
is surjective it suffices to show that

M'(ma) ~ M'(mb) == ma = b.
Sttt assurming bt A~ WA Uoh wergeetby the above that
Ma ~ M'(ra) ~ M'(mb) ~ Mb,

so that Ma ~ Mb and hence wa = wb. O

Note that in applying this lemma to M = Vj~,ifz = Gae M
then Mz = Ga so that Mz ~ Ga and Mz is ~-extensional, as
Ga is.

4.5 Proposition: For each ~-extensional system M there is a
unique injective system map M — V.

Proof: By exercise 4.2 the uniqueness of the injective system
map follows from the fact that V.~ is ~-extensional. So it only
remains to show the existence of a system map M — V., where
M is ~-extensional. Clearly mps : M — Vj~ is a system map,

—l s ~ Ead
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Proof: For (1) implies (2) let M be ~-complete and let My be a
~-extensional system. Then for a € M) the apg Moya must have
an injective M-decoration d, which, by exercise 4.2, is uniquely

determined. Define d : My —s M by
da=dsa for a e M.

: T ] N PRI
© Liat it G C{Mu‘fﬁgﬁ ‘d:‘tn‘-:igaﬂll(-ﬂa({l') for z € apyr, SO that

(daa)rr = {dyz | 7 € apyg, },

ice (da)rr = {dz | z € apy,}. Thus d is a system map. To
t d is injective use the hint to exercise 4.2 to get that

d; : Moz = M(dx) and dy : Moy = M(dy),

if dz = dy then Myzr = Moyy. It follows that if dz = dy
0 ~ Moy and hence z = Y, as My is ~-extensional.

(2) implies (3) let M < M’, where M’ is ~-extensional.
M’ < M. So there are injective system maps M — M’

— M De avenl A E

LS DT Y

and he
see tha

so that
then M

For
By (2)
and A/

veensionar weell, as Gy s,
he case that Gx ~ Ga for some a € Gp. As ~ is a
t follows that
€ac Gy~Ga & Va €agdye g ( 1y ~ Ga'.
and a € M with ag; = ay. Also Gy=Myforyezx
fa” for a’ € ar;. Thus

apf J‘.l'!/ ~Md & Va' € q vy € x A"[',’,/ ~ Ma'.

it must be
bimulation

Yy € *¢3da

But x; =z

and Ga' = |

Vy € z3a’ €
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Hence, as M is ~-extensional
r=ap.

The uniqueness of a is a consequence of the fact that M is
~-extensional and hence extensional. O

The Axioms AFA™

So far we have not given our generalisation of AFA. To do so we
must assume given a definition in the language of set theory of the
regular bisimulation ~. So we assume given a formula ¢(z,y),
without any parameters and having at most the variables z,y
free, that defines ~ in V. This means that for all apg’s ¢ and d

c~d <= VEde,d).




46  Variants of the Anti-Foundation Axiom

and let ~)s be the relation on M that the definition ¢(z,y) of ~
defines in M; i.e. for c,d € M

c~vmd <= M E¢(cd).

For each ¢ € M such that M [=“c is an apg” there is a natural
way to obtain an apg from it (see below). Let us call the result
extpy(c). The formula ¢(z,y) is an ABSOLUTE formula for M if
for all ¢,d € M such that M “c, d are apg’s”

c~md <<=  exty(c) ~ extry(d).

We turn to the definition of extar(c). A pointed graph will
here be represented as a triple ((a,b),u) where a is a set, b is a
binary relation on a and u is an element of a. So if ¢ € M then
M [=“c is a pointed graph” if and only if ¢ = ((a,b)™), u)M) for
some (uniquely determined) a,b,u € M such that

bu € {(z, )™ | 2,y € an}

and u € apr. With such a ¢ in M we may associate the pointed

graph
((arr, {(z,v) | (z,)™ € bur}),w).

Call this ezt (c).
We can now state the generalisation of theorem 3.8.

4.11 Theorem: Let ~ be a regular bisimulation whose defini-

ubit s avurabe 1o~ Tufr Byseetins: - 1 fdirea’n "~-complete system
M is a full model of ZFC™ + AFA™.

Part (iv) of exercise 3.9 also generalises, so that we get the
final general result.

4.12 Theorem: Let ~ be a regular bisimulation whose defini-
tion is absolute for full systems. Then ZFC~ + AFA™ has a full
model that is unique up to isomorphism.

Finsler’s Anti-Foundation Axiom

In this section we apply the general theory of the previous section
to an axiom inspired by Finsler (1926). In that paper Finsler
presents three axioms for a universe consisting of a collection of
objects, to be called sets, and a binary relation € between them.
His axioms are as follows:
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I. € is decidable.
II. Isomorphic sets are equal.
III. The universe has no proper extension that satisfies I. and II.

If we take Finsler’s universe to be a system in our sense then
we can ignore axiom I and turn to his axiom II. One might expect
that the correct way to express Finsler’s notion of isomorphism in
a system M is to take a,b € M to be isomorphic if the apg’s Ma

ana v'v’todv tnéy aetermine are 1somorphic apg’s. According to
this view M is a model of II. iff it is =-extensional; i.e.

Ma = NMb — o =10

But on examining Finsler’s paper this is clearly seen to be incor-
rect. In fact Finsler understands his axiom II to be a strength-
ening of the extensionality axiom. But Z-extensional systems
need not be extensional. For example consider the two element
graph G:

It has nodes @ and b and edges (a,b) and (b,b). Clearly




48  Variants of the Anti-Foundation Axiom

Let =* be the relation on Vj defined by:
Ga>*Gd <+ (Ga)*=(Gd)".
We call a system M a FINSLER-EXTENSIONAL system if it is =*-
extensional; i.e.

Ma=*Mb = a=b

it 1s the Finsler-extensional sysiems that we take to be the models
of axiom II.

4.13 Exercise: Show that

(i) =* is a regular bisimulation.
(ii) A system M is Finsler-extensional iff it is both extensional
and =-extensional.

4.14 Exercise: Let ~ be the relation on Vy: Ga ~ G'a’ iff there
is a bijection v : ag = ag, such that Gz = G'(yz) for z € ag.
Show that
(i) Ga=*G'd = Ga~Gd.
(ii) ~ is a regular bisimulation.
(i) M is ~-extensional iff M is Finsler-extensional.

Let us now consider Finsler’s axiom III. I take a Finsler-
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Scott’s Anti-Foundation Axiom

In Scott (1960) a model of ZFC~ with non-well-founded sets is
constructed out of irredundant trees. Scott defines a tree to be a
REDUNDANT tree if it has a proper automorphism; i.e. an auto-
morphism that moves some node. The tree is an IRREDUNDANT
tree otherwise. Scott (1960) gives another characterisation of this

Houoi: We ikave v as a1 exercise:

4.18 Exercise: Show that a tree T'r is redundant iff there is a
node c of Tr and distinct a,b € cr such that Ta = Tb.

Scott’s idea is to use irredundant trees to represent the struc-
ture of sets. Recall that the canonical tree picture of a set c is
obtained by unfolding the canonical picture Ve of ¢. Scott’s model
construction may be described as follows. Let V{ be the subsys-
tem of Vj consisting of the irredundant trees with all the edges

O Ao VECT) CIl NNOAES ) £l
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4.20 Lemma:
The unfolding of a =!-extensional apg is an irredundant tree.

Proof: Let Gn be a “-extensional apg. Let a,b € cg, where
¢ € (Gn)t, such that (Gn)'a = (Gn)'b. Then (Ga) = (Gn)ta &
(Gn)!b = (Gb)! so that Ga = Gb and hence a = b as G is =I-
extensional. Thus (Gn)® is irredundant. m]

ot

4.21 Lemma: If Tr is an irredundant tree then there is a
extensional apg Gn and a surjective system map 7 : Tr — Gn
such that Tr = (Gn)! and for a,b € Tr

ma=mb <= Ta=Tbh.

Proof: Let T'r be an irredundant tree. Let ~ be the equivalence
relation on the nodes of T'r defined by

a~b <= Ta=Tb,

for a,b € Tr. As ~ is a bisimulation equivalence we can form a
quotient 7 : Tr — Gn of Tr with respect to ~ by letting

na={beTr|a~ b}

for a € Tr, and letting G = {ma | a € Tr} and n = 7r. It only
remains to show that Tr = (Gn)'. So define ¢ : Tr — (Gn)" by:

Ya = (7r,...,Ta)

for a € Tr, where r — - -- — a is the unique path in T'r between

U5 ISP I T [ (WIGERIEESE, ()
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o0 Tamrmee - JAL are N e (.7 SR S SR [N, g S
G. L4 LCLIIIIIA. 1 T ¢ ( U u 1 XL YLV, LR S 11

o1 U ¢ uetermuneu vy wo and 1o’ will also be isomorphic. But
these are isomorphic to (G'c) and (G'c’)* so that (G'c)t = (G'c’)!
and hence G'c & G'c. As G’ is 2-extensional ¢ = ¢/. Thus 7
is well-defined and a similar argument shows that = is injective.
That 7 is also surjective and is a system map should be routine
to check. o

The axiom SAFA may be split into the two parts:
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. . oot
Thus V is ='-extensional and so AFA; is proved.

o AFA¥' = SAFA,.
By AFAZE' the apg Va is =*-extensional so that by lemma
4.20 the tree (Va)! is irredundant.

o SAFA = AFAY
Let Ga be a 2'-extensional apg. Then=sy lemma 6:1 the
tree (Ga)' is irredundant. Hence by SAFA; there is a set ¢
such that (Ga)* & (Ve)t. By (1) it follows from SAFA; that
Ve is ='-extensional. Hence by lemma 4.22 Ga = Ve. Thus
Ga is an exact picture of c.

o AFAY' — SAFA,.
Let Tr be an irredundant tree and let 7 : Tr — Gn be as
in lemma 4.21 so that Gn is &'-extensional and T = (Gn)'.
By AFA'ft there is a set ¢ such that Gn = V¢ so that T'r =
(Ga)! = (Vc)t. Thus Tr is isomorphic to a canonical tree
picture. |

4.24 Theorem: SAFA is equivalent to:

An apg is an exact picture iff it is Scott extensional.

4.25 Theorem: ZFC~ + SAFA has a full model that is unique
up to isomorphism.

The Relationship Between the AFA™
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(1) Every strongly extensional svstem is ~-extensional-

/o) T . N R 4 s T 1 _u_ __HFE

witn vne aisuinct nodes a, b. This 1s =" -extensional because

(Ga)t # (Gb)'. In fact (Ga)' is
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while (Gb)* is simply




Variants Using a Regular Bisimulation 55

diagram that the subtrees (Gb)! and (Gc)" are isomorphic.
This shows that G 1s not =~!_extensional. But G is clearly

assumed there is a unique injective decoratlon that assigns
pairwise distinct sets A, B, C' to the nodes a, b, ¢ respectively
so that A= {C},B = {A,C’} and C = {B,C}. ]

wWiler this theorem was presented in the course I only had an
infinite example for part 2. The first finite example was found
by Randoll Dougherty after I raised the problem in a talk at
Berkeley. His graph had 9 nodes and 26 edges and after a series
of improvements the above simple example with only 3 nodes
and 5 edges was found by Larry Moss. Another example with
the same number of nodes and edges was found independently
by Scott Johnson. It is the following graph:

4.28 Corollary:
AFA, FAFA and SAFA are pairwise incompatible axioms.
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Baffale, Waale Vi
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BA; may be viewed as giving the most generous possible an-
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Boffa’s Axiom and Superuniversal Systems

Here we will consider an axiom for non-well-founded sets due to
M. Boffa. Assuming that V = On we will show that this axiom
has a unique full model up to isomorphism. In this respect it is
like the axioms AFA™, but it turns out not to be one of these.

mi _ ¢ 11 SR
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can always be completed. This means that given extensional
graphs G and G with Gy ¢ G and an injective system map
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By (3) the diagram

~
~
~
~
~
R

Gy — M

can be completed. Hence we get the following commutative dia-

gram
G — &

I RN

Gf —— Gy —— M
Go

From this diagram we get a map G — M which completes the

diagram
G ~
T Ty
Gop — M
sU it 1) idproved. o

If the conditions in this proposition hold then we say that M
is a SUPERUNIVERSAL system. Note that
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In the first case suppose that G is extensional. Then by the
superuniversality of M the diagram

£y
~
~
~
~
S

Gy —m M

can be completed with an injective system map d: G — M. As
d is the identity on Gy and *¢ = z, if a = d* then

apy ={dy |y € ¢} = z.

In the second case suppose that G is not extensional. As
Go ¢ M and M is extensional it follows that G is extensional.
So there must be a € Gy such that ag = *g. But *g = = and
Go ¢ G and Gy ¢ M so that

ap = aG, = aG = *G = T. "

5.10 Exercise: (See Boffa 1972a) Show that BAFA implies o,
where o expresses that for every set x there is a set y distinct
from z such that y = {z,y}. Show that BA; does not imply o
by finding a globally universal* full system that is not a model
ofo.

A Backwards and Forwards Argument
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If M' is superuniversal and m € M then there are graphs F ¢ M
and F' ¢ M’ and an isomorphism F «— F’' such that m € F and
the diagram

G —s F —— M

! !

GI SN F/ e 3 MI

commutes. Moreover if M is also superuniversal and m' € M’
then F and F' can be found as above so that also m’' € F'.

Proof: As G ¢ M and (Mm) < M it follows that GU (Mm) < M.
Let F = GU (Mm). Then m € F. As M’ is superuniversal the
diagram

G —— F

! i
Gl & MI

can be completed with an injective system map F — M’, which
can be factorised to give F' +—— F' < M’ and hence the diagram

G —— F —— M

! !

G/ — FI e Ml

If M is also superuniversal and m € M’ then we can repeat
this construction starting from the diagram

F — M

!

FI - MI

except that the roles of M and M’ are interchanged. This time
we get the commuting diagram

F ——s H «—— M

! !

FI - 3 Hl - MI
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and hence the commuting diagram

G —s F —— H —H M

I I !

GI B FI —y Hl — 3 MI
If the middle isomorphism is left out and H and H’ are rela-

beled F and F' respectively then we get what we want with both
m € F and m’' € F'. |

A.12 Theovem: (Assuminsy== Un)
If M and M' are superuniversal then M = M.

Proof: As V = On there are enumerations {ma}acon of M and
{my}acon of M’. By transfinite recursion on a € On we will
define G, ¢ M, G|, ¢ M’ and i, : G, = G/, such that m, € G,,
mg, € G, and whenever 3 < v then G5 2 G, Gj < G, and the

diagram
Gg ——— G,

I I

v/ /
B Gv

commutes.
Once this is done it is clear that

M= ] Ga M = |J Guandi: M2 M wherei= U -
acOn a€On acOn
So suppose that Gy @ M, Gy ¢ M' and iz : G5 = G/, have
been defined for 3 < a so that my € G, mj; € G5 and whenever
B < 7 the above conditions hold. Then G ¢ M, G’ ¢ M’ and
. ~ NS
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(iii) The system M is extensional iff
a~pyb = a=0b
(iv) Ifm : M — M’ is an injective system map then for a,b € M

a~yb < ma~pr wh,

5.16 Lemma: (Assuming V = On) If M is a system then there
is quotient m : M — M’ of M with respect to ~ .

Proof: As V = On there is an enumeration {mq}ocon of M.
For a € M let ma = mo where « is the least ordinal such that
ma ~p a. Then we clearly have

(*) a~pmb < ma=mb

for a,b € M. Let M’ be the system having as nodes the ma for
a € M and having as edges (ma,7b) for a — bin M. As ~ps
is a bisimulation M’ is indeed a system and 7 : M — M’ is a
surjective system map. It remains to show that M’ is extensional.
So let (ma)pr = (wb)pr. Then {7z |z € apy} = {my|y € bu}
so that

Vz € apJy € by(rz =7y) & Vy € by € apy(rr = my)
By (%) and the definition of ~ s it follows that a ~»s b and hence
wa = mb. O

Ca“ a cvatam man a + M 1« M/ sivan in thic lamma a

e ORGSR B IN SO LS

5.17 Exercise: Let M be the system of extensional apgs. Let
m : M — M’ be a minimal extensional quotient of M. Show
that M’ is globally universal.

5.18 Theorem: (Assuming V = On)
There is a superuniversal system.

- .« Proof: We. shall give an inductive.definition of a systemn M. The s
superuniversal system will be obtained as a minimal extensional
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Now Gy and G satisfy (*) so that by our earlier work we can find
an injective system map m; : G — M extending the identity
map on Gy. We now have the commutative diagram

- (2

5 oo
] ] \y

)
M*—’GO Gf)‘—)M/

\_ - /

which we wish to complete with an injective system map 7’ :
G' — M’ extending the identity map on G{,. We need the
following result.

5.20 Lemma: Forz,y € G

v =vy < 7(mz) = n(my).

Proof: Observe that by part (iv) of exercise 5.15.
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6 | Fixed Points of
Set Continuous Operators

In this chapter we consider the notion of a set continuous opera-
tor. Each such operator will be shown to have both ageast 2»d
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(iii) Thereisamapv: A — V,
. 5 5 V6 g

for some class A, and a family
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S+ - +b, = Z :,[(I)I-

when I = {1,...,n}. Also if ® is set continuous then so is &’ for
each set I, where ® = [1;c; ®; when ®;, = ® for each i € I.

Using the results of this exercise a great variety of set contin-
uous operators can be formed. An example, chosen more or less
at random, is the set continuous operator ® = (pow((powld) +
Id! )) X K 4, where I is a set and A is a class. This is the operator
such that for each class X

®X = pow(pow X + xXHx A

for all classes X.
Fixed Points

Wé now turn to the construction ot ‘the léast ana greatest fixed
points of a set continuous operator. If ® is a set continuous
operator let Is = {fi | (f,<,i) € B} where B is the class
of triples (f, <,%) such that f is a function, < is a well-founded

= O Ol 1 alolnn alelan ila () (1O
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F(f,<,9) = fi

for (f. <‘i) = AO- ObserVe th‘gf (L' v )\ € R cn that ac
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o= e ).
B<a
Show also that
I, = |J I
a€On
Ji = n J2.
aeOn

Often a set continuous operator has the following additional
property.

6.8 Definition: The class operator ® PRESERVES INTERSEC-
TIONS if for every family of classes (X;)icr

(X)) = [)exX.

iel i€l

If the set continuous operator ® does preserve intersections
then ®(N,c, J") = MNpew " = <o J"- It follows that
this is the largest fixed point J.

6.9 Exercise: Show that:
(i) If ® is defined as in (ii) of exercise 6.2. and for all a,z,y

aRx & aRy — zxz=y

then ® preserves intersections.

(ii) If ® is defined as in (iii) of exercise 6.2. and for all 61,62 € A
and all fy v -V, fo:v6 >V

15, /1 = Ts,fo = ranfi = ranfs
then ® preserves intersections.

We_end_this_chanter. with.a nseful. agnlicatiecn 61 474, "We
use the terminology of the Substitution and Solution lemmas of
chapter 1. So let X be a class of atoms and let & be a set

continuous operator with largest fixed point J. We gall X

o
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6.10 Theorem: (assuming AFA) Let a; be a ®-local X-set for
each atom x in X. Let m = (b;)zex be the unique solution, which
exists by the solution lemma, of the system of equations

z =a; (z€X).
Then b, € J for all x € X.

Proof: Let B = {b; | z € X}. If b € B then b = b, = fa, for
some x € X so that, as a, is ®-local, b € ®B. Thus B C ®B so
that B C J. O

As an example of the use of this result let X = A x X for
each class X, where A is some fixed class. Let ag,a1,... € A and
let (bn)n=0,1,... be the solution to the system of equations

Tn = (an,Tnt+1) (n=0,1,...).

As (an,zn+1) is ®-local for each n it follows that b, € J for
each n.






7 | The Special Final
Coalgebra Theorem

Perhaps the main result of Part 1 was Theorem 3.10. That the-
orem with theorem 3.8 characterize the full models of AFA as
those systems M such that for every system M’ there is a unique

svstem man M/ — M. Assumine AFA. the larsest fixed noint V BT
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pow, and the system maps are the coalgebra homomorphisms.
The notion of coalgebra will be defined as a dual to the more
familiar notion of an algebra.

Initial Algebras and Final Coalgebras =

a formulatlon of the general notions we will be We start with

T AR Y P Vel P MESS; LTS o ML 1SN oW
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if it is an inijtial algebra relative to ®°?. Thus (A, ) is a final
coalgebra if « : A — ®A in C such that whenever 3: B — ®B in
C there is a unique map 7 : B — A in C such that the diagram

[0y
dPA ——— OB

| e

A —— B
™

commutes.

Thus the notion of final coalgebra is dual to that of initial
algebra and the results of the exercise give dual results for final
coalgebras.

Standard Functors

From now on we fix C to be the superlarge category whose objects
are classes and whose maps are the class maps between classes.
The excessive size of this category is not a serious problem. It

D R o I L IO} AP R

is a standard functor. The following exercise gives further ways
to construct new standard functors from old ones.

7.4 Exercise: Let (®;)ic; be a family of standard functors
indexed by the class I.

(i) Show that ), ; ®; is a standard functor ® where if X is a
class
OX =) ®.X,
el
and
(®)(ia) = (i, (B:m)a)



(ii) Show that if I is a set then H ®; is a standard functor ®
i€l
where if X is a class z

dX = H [35'¢
i€l
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Also note that any fixed point of a standard functor can be
viewed as a full aloehra ar full cnaloehra naino the identitv man

=1
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P1
Xo — X

le J(II

Xa Y

q2

such that for all ;1 € X1, z2 € X5 such that ¢1z1 = ga2x2 there
is x € Xy such that

z1 = p1x and 9 = pox.

Final Coalgebra Theorem:
Any standard functor that preserves weak pullbacks has a final

coalgebra.

We will outline a proof of the final coalgebra theorem. The
constructlon of a final coalgebrd will generahse the Constructlon

e o ) NS

is not hard to show that a coalgebra is final if it is comp <>t(> T he
unique homomorphism from a possibly large coalgebra (Y, 3) to
a complete coalgebra is obtained by piecing together the unique
NOmMOmOrpnisms Irom the small supcoalgenras oI (I,2) to uhe
complete coalgebra.

A coalgebra (X,a) is a WEAKLY COMPLETE coalgebra
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for (X,a,z) € C. To see that the coalgebra (C,v) is weakly
complete observe that if (X,a) is a small coalgebra then o™ :
(X,a) — (C,~) is a homomorphism.

The following result is the key to the construction of a com-
plete coalgebra from a weakly complete one.

7.7 Lemma: If ® preserves weak pullbacks then for each coal-
gebra (X, a) there is a strongly extensional coalgebra (X, @) and
a surjective homomorphism (X, a) — (X, @).

If we apply this lemma to the weakly complete coalg
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need to use the expanded universe of sets involved in the solution
lemma in chapter 1. Recall that the expanded universe has an
atom z; for each pure set ¢. If z is such an atom let i; be the
pure set 7 such that z = z;. Given a class A of pure sets let

Xap = {wiliGA},
and if 7 : X4 —» V lét 7' : A — V be given by
7't = 7x; for all s € A.

A standard functor ® is defined to be UNIFORM ON MAPS if for
each class A of pure sets there is a family (¢, )ucoa, Where ¢, is
an X g-set for each u € ®A, such that for all 7 : X4 — V and all
u€ dPA

(@1 )u = #e,.

The Special Final Coalgebra Theorem:
(Assuming AFA) If ® is a standard functor that is uniform on
maps then Jy is a final coalgebra.

Proof: Let (A, a) be a coalgebra for ®. So a: A — ®A. Let ¢,
be an X 4-set for each u € ®A4 such that for all m: X4 — V and
allu e A
(&1 \u = 7c,.
For each x € X4 let a; be the X s-set cq;, .
Note that each X 4-set a, is ®-local. For if B is a class of
pure sets and 7 : X4 — B then

Fag = Feus, = (B )(aiz)

so that, as ai, € ®A and ©77: ®A S ®B, it Tollows that 7a, €
®B.
By the solution lemma the system of equations

z =a; (z€Xa)

has a unique solution, and by theorem 6.10. that solution is a
map 7 : X4 — Jgp. It follows that 7’ : A — Jp such that for all
1€A

7'l = wx; = Rag, = fce; = (') (ai),

so that the diagram
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/
m

A — Jp

°| |

PA — DJp
&'

commutes. This means that 7’ is a homomorphism from the



8 | An Application to
Communicating Systems

In this chapter we illustrate some of the general theory described

in the previous two chapters by considering the examplesftermr
computer science of Robin Milner’s Synchronous Calculus of
Communicating Systems, abbreviated SCCS. (See Milner 1983.)
This calculus can be viewed as a mathematically streamlined
and synchronous version of the earlier calculus CCS. (See Mil-
ner 1980.) In (Milner 1983) Milner set up SCCS by giving an
inductive definition of a class of infinitary expressions. These ex-
pressions are intended to represent the possible states of systems
that can communicate with each other. Communication between
systems is represented by synchronisation of atomic actions. To
captirre ulenida ot Syacthomnsavionr mifilrer-uses air a'deilan group
Act of atomic actions. The parallel synchronous composition of
two atomic actions a,b is represented by the atomic action ab
obtained by using the group operation to compose a and b. The
identity aa™! = 1, where 1 is the unit of the group, is used to
represent the synchronisation of an atomic action a in one system
with the inverse atomic action a~! in another system. Here we
take the view that this aspect of SCCS is not fundamental to
its mathematics. So we will assume given an arbitrary set Act
of atomic actions and impose no structure on it. Of course in
the applications Act will need to be structured suitably, but such
structure can be introduced as needed.

Milner gives the expressions of SCCS an operational seman-
tics in terms of an inductive definition of a family of binary
relations on the class of expressions. These relations are indexed
by the set Act and used to represent allowed transition steps from
one state of a system to another, each step being labelled with
an element of Act. So the operational semantics determines what

91



92  On Using the Anti-Foundation Axiom

has been called a labelled transition system. Different expressions
of SCCS can have the same abstract behaviour as determined by
the operational semantics. In order to capture this notion of
abstract behaviour Milner makes use of a concept first consid-
ered by David Park in (Park 1981). This is the concept of a
bisimulation relation on a labelled transition system. Among the
bisimulation relations there is always a maximal one, which is
moreover an equivalence relation. The notion of bisimulation re-
lation on a system used in thls book is 81mp1y the spemal case

wnym‘eme" ”"dmﬁraj aﬂ‘:‘j:rm M‘f’ Irer‘é‘&b'nstructlon is to form a
quotient of the class of expressions by strong congruence. The re-
sult is a labelled transition system which gives a model of abstract
behaviours for a certain notion of computational system
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1t tollows that ‘the largést nxed point oOf thé tunctor is a nnal”
coalgebra, provided that we assume AFA. In this way we get

a very simple and direct set theoretical construction which can

be used to replace Milner’s considerably more elaborate quotient
construction. Of course the “penalty” to be paid for this simplic-

ity is the need to use non-well-founded sets and AFA. But if one 1
accepts the point of view suggested in this book then that is no

penalty at all.
Transition Systems

Transition systems form a natural model for computation pro-
cesses. Such systems consist of a class X of possible states of the
system and a family of binary transition relations — between
states, one for each possible atomic action a of a process. So r
& — y holds if there is a possible atomic transition step of the
process from the state z to the state y in which the atomic action

a takes place. So a computation of a process starting in a state xo '
BT e W e e OO O, . 0D N, SO

for all x € X. I'he transition relations can be recaptured from o
using the definitions:

a
z—y <= (a,y)€azr

for z,y € X. Now observe that a : X — ©X where O is the
WGnllswiirgstandard functor on the category of classes:

O = powo (Kay X Id).
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as determined above. Notice that we allow a T'S to have a class
of states and so will call it small if the class is in fact a set. We
will call a coalgebra homomorphism between 7'Ss a T'S map.

The Complete Transition System P

As O is a standard functor that preserves weak pullbacks we
may apply the final coalgebra theorem to get the existence of
a final coalgebra for ©. We will call such a coalgebra a COM-
PLETE TS. '[he abstract behaviours of SCCS turn out to be
the states of a complete TS, a mathematical structure that is
uniquely determined up to isomorphism. So SCCS could be de-
veloped axiomatically on the basis of a postulated complete T'S.
Here we prefer to follow an alternative course and instead use
AFA and the special final coalgebra theorem. As the functor ©
is uniform on maps we can apply the theorem to get a 31mple

theoretical definition of a complete 7.5 P. P is detined to be

largest fixed point of ©, or equivalently, it is the largest class
1 that if P € P then P is a subset of Act x P. P is a TS with
sition relations — for a € Act given by

PLQ < (a,Q¢€P
all P,Q € P.
As P is a complete TS, for each T'S (X, «) there is a unique
map (X,a) — P. We will call this map the BEHAVIOUR
» for (X, a). It is the unique map m : X — P such that for
€ X

rz = {(a,my) |z — yin (X,a)}.

TS arises as an operational semantics for a programming
uage then the behaviour map for the 7'S will give a canoni-
representation of the abstract behaviours of the programs of
language, as given by the operational semantics. In this way
complete T'S P plays the role of a domain of mathemati-
objects that can be the denotations of programs for such a
ramming language.

ne Operations on P

will define some operations on P that correspond to the four
lamental combinators that Milner used in (Milner 1983) to
1€ the oxpresswnb of § C(YJ The four combinators were called

BEL

the
suc
tra

for

MA
all
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Action

We start with the action operations. Given a € Act there is an
operation on P that assigns to each P € P aset a : P € P such
that for all b € Act and Q € P

a:P—b>Q = [a=b& P=@Q].

So a : P allows only the atomic action a to become P. In fact we

define
a: £ ={(a, P}

Summation

Next we consider the summation operations. Given P; € P for
i € I, where I is a set, there is a unique element ., P; of P
such that for all b € Act and Q € P

ZPi—baQ — [Pi—b—>Qforsomez'€I].
1€l
In particular, when I = () we get the null element 0 of P which

allows no atomic steps, and when I = {1,...,n} we get the finite
sum P; + ...+ P,. In fact in general we define

>k = Ur
il i€l
and in particular we get that
0 =0

PitertFy = PLU~=UB,.

Note that the following equations trivially follow from these def-
initions.

P+Q=Q+P
P+(Q+R)=(P+Q)+R
P+0=P

Py3P=P
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Restriction

The third operation on P that we define is the restriction opera-
tion. Given A C Act there is a unique operation —[A: P — P

0
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fact it is the unique behaviour map for the TS (P,3,) where
By : P — pow(Act x P) is given by

BoP = {(pa,Q) | P = Q}
for all P € P.

Delay

The delay operation depends on a distinguished element 1 € Act.
It is the unique operation § : P — P such that for all b € Act
and Q € P

5P2Q <« [b=1&6P=Q]or[P-5Q]

In fact we can define it to be the unique behaviour map for the
TS (P,0) where o : P — pow(Act X P) is given by

oP = PU{(1,P)}

for all P € P.

As mentioned earlier the set Act is given the structure of
an Abelian group in (Milner 1983). It is the group composition
that is used in defining the product operation on P. Also the
unit 1 of the group is used in defining the delay operation. The
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for all P,Q, R € P. Note that we have implicitly used the asso-
ciativity of the group operation by leaving out brackets from the
expression “abc”. By the uniqueness of behaviour maps 71 = ms.
If we define 1 = 0 then it is the unique element of P such
that
1=1:1

Also we have the equality
Prl=P

for all P € P. Note also the following distributivity laws where
I is a set and P; € P for each 7 € I.

Qx (Y P)=Y (@xP)

i€l el
O _P)IA=) (P14)
i€l i€l
O P)lel =) Ry
el el

There are a variety of other equations for these SCCS operations
which can be found in (Milner 1983).

Merge

Other operations on P can be defined as wanted by using varia-
tions on the definitions. For example we may wish to consider a
parallel merge operation on P instead of the synchronous prod-
uct x that has been defined. Solet — | — : P xP — P be
the unique operation such that for all P;, P, € P if b € Act and

Q E€Pthen P, | P o, Q if and only if either

P1—b+P1' and P| | P» = Q for some P]

or else
Pzi»Pé and P; | Py = Q for some Pj.

It is the unique behaviour map for the T'S (P x P, ) where for
P,P,eP

w(P1, P)={(a, (P], P2)) | L— P{}U{(a, (P1, Py)) | P> P3}.
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Now each atomic step of P; | P, corresponds to an atomic step
of exactly one of the processes P, P, with the other process
not moving. This definition can be modified so as to allow for
the synchronisation of an atomic action a of one process with
the inverse atomic action a~! of the other process. This can be
done by replacing p in the definition by the map u’ where, for all
P, Py, € P, y/(P1, P) is the union of the set p(P;, P2) with the
set
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A | Notes Towards a History

Ao indinatnd he +ha +itla

1LLle ADOUL WhAlL nad previously been written on ‘the subject.
Gradually, I became aware of the sporadic interest the idea had

PRI BTN PRI SURPRPT IR

B AL 1115 v ujn Lliivut Y rann UL Lol Vil J dlviuo wu

mto quarter century periods.

1900-1924 Development of the notion of a non-well-founded set.

1925-1949 The first order axiom of foundation, its relative con-
sistency and independence.
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interest. For Cantor, even the idea of membership as a binary re-
lation on a domain of objects seems to have been distant from his
thinking. Consider Cantor’s 1895 statement about his concept of
set.*

By a ‘set’ we understand every collection to a
whole M of definite, well-differentiated objects m
of our intuition or our thought.

(We call these objects the ‘elements’ of M)
(Cantor 1895, page 282)

It is not altogether clear from this statement alone that sets
are themselves definite, well-differentiated objects and hence can
themselves be elements. But there would seem to be little doubt
that Cantor would have agreed that they were, if he had been
asked. Nevertheless Cantor appears to have made little use of sets
that have sets as elements. This is blatantly not the case for Frege
and Russell who based their theory of the natural and transfinite
numbers on equivalence classes of sets. For them natural numbers
were sets of finite equinumerous sets.

Frege must have been the first to explicitly envisage a universe
of objects, (for him the universe of all objects), including sets (for
him the courses-of-values of propositional functions) with a bi-
nary membership relation on this universe. But he appears to
have paid little attention to the structure of this membership
relation. No doubt he was busy with more pressing tasks in com-
pleting his two volume work (Frege 1893). As it is, because of his
combination of the course-of-values construction with his treat-
ment of sentences as names of truth values fis conception turned

PR P N TP-POR P, I St PRy By I B RO p PR, )
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some unique type and sets of objects of a given type will them-
selves be objects of a distinct type. So while the theory does allow
for a membership relation between objects of any given type and
sets of such objects, it does not allow even for the meaningfulness
of the assertion of the membership of a set in itself, as that would

require the set to have distinct types.

Russell’s theory of types had its own difficulties for mathe-
maticians following the Cantorian tradition. Having once grasped
the possibility from the presentation of Russell’s paradox of hav-
ing a domain of objects with a membership relation as framework
for set theory, it was not long before an axiomatic approach
to such a framework would be taken. And in (Zermelo 1908),
the mainstream axiomatic approach to set theory was initiated.
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tHe  ax10ms 161 the compiérery oradrea’ ey’ o1 ‘real ' numpvers. In
each of these earlier examples a certain ‘extremal axiom’ ensures
that the axiom system is categorical, i.e. has a unique model, up
to isomorphism. (Of course I am not concerned here with the
modern idea of first order fully formalised axiomatisation, but
rather the traditional informal idea).

Thus, in the case of the axiom system for the natural num-
bers, the extremal axiom is the principle of mathematical induc-
tion, which is a minimalisation axiom, as it expresses that no
objects can be subtracted from the domain of natural numbers
while keeping the truth of the other axioms. The axiom sys-
tems for Euclidean Geometry and the real numbers involve on
the other hand completeness axioms. These are maximalisation
axioms; i.e. they express that the domain of objects cannot be
enlarged while preserving the truth of the other axioms.

In a natural move to ‘complete’ the axioms for set theory,
su” as to obtain a categorical axiomatisation, (Fraenkel 1922),
introduces the idea of an axiom of restriction. This was to be
a minimalisation axiom. Such an axiom would ensure that only
sets actually required in order to satisfy the axioms would be in
the domain of sets.

In particular this would rule out Mirimanoff’s extraordinary
sets. But it would also rule out those ordinary sets that are simply
never obtained by repeatedly forming sets using the operations
required by the axioms, for example, because their rank in the
cumulative hierarchy is too high.

There are a number of difficulties in carrying out Fraenkel’s
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descending €-chain. Von Neumann introduced his axiom as a

precise formulation of an axiom of restriction in Fraenkel’s 1922
sense, realising full well that its addition to his axiom system
would not make the system categorical.

The foundation axiom, FA, in its modern ZFC-form appears
in (Zermelo 1930). Independently, von Neumann in (von Neu-
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uses reflexive sets i.e. sets such that z = {z} so as to simulate

Urelemente and so translate the Fraenkel-Mostowski method for

P PSR, | e P e 0

ry point of this simulation means that only a very limited kind
' non-well-founded set is actually used; i.e. while there may be
finite descending €-sequences, they all eventually become con-
antly equal to a reflexive set. Note that it is essential for the
oplications that infinitely many reflexive sets are needed so that
1e context is indeed some way from AFA, SAFA or FAFA where
ere is exactly one such set.

The methods of model construction for the independence re-
11t invented by Bernays turned out to be a very flexible tool for
eating a great variety of models of set theory in which the ax-
m of foundation fails. Over the years the method was exploited
y several people. (See Rieger 1957, Héjek 1965, Boffa 1969b,
elgner 1969 and especially Felgner’s book, Felgner 1971, which
ves a survey.) The general method is encapsulated in Rieger’s
ieorem, (Rieger 1957). This result also covered Specker’s con-
ruction, but the result has mostly been applied to systems V,
stained by choosing a suitable permutation 7 of V.

In the same year as the important publications of Specker
d Rieger we find in (Kanger 1957)* an unexpected role for
on-well-founded sets in a completeness theorem for a variant of
ie predicate calculus. We have briefly explained this at the end
' chapter 2. In his book Kanger states the set theoretical axiom
> uses in an interesting “net” terminology for graphs. This
rminology views a graph as a net made of cords tied together
ith knots. The cords are the nodes of the graph, while an edge
ises when cords are tied together in a knot. Kanger suggests
1at this terminology has heuristic value in that the intuition
nderlying the formation of a set of objects is represented in an
ovious manner by the act of tying the cords representing these
bjects together with a knot.

Dana Scott’s (1960) contains a formulation of the axiom I
e cauelr bAFAA ana-a model construction for it. Sadly this
er has remained unpublished. It was presented at the 1960
nford Congress and contains many interesting speculative

“ T am grateful to Dag Westerstahl for drawing my attention to Kanger’s
book.
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remarks.* Scott was unaware of (Specker 1957) when he wrote
his paper, and preferred to publish another paper when he discov-
ered that Specker had already given a similar model construction.
Nevertheless, after (Finsler 1926), Scott appears to have been the
first person to consider a strengthening of the axiom of exten-
sionality. This idea seems to have then lain dormant until the
1980s.

Scott’s model construction is in fact closely related to Spec-
ker’s but there is a subtle difference in the notion of tree that
they use. In fact neither of them formulate their notions of tree in
terms of graphs but rather in terms of what it will be convenient
here to call tree-partial-orderings. Scott’s tree-partial-orderings
are partially ordered sets having a largest element such that the
sets of nodes larger than any given node form a finite chain under
the orderings. Any tree 7" in the sense of this book determines
such a tree-partial-ordering > of the nodes by defining a > b
if and only if there is a path a — --- — b in T (possibly of
length 0, when a = b). Moreover, every tree-partial-ordering in
Scott’s sense arises in this way. Specker’s notion of tree partial
orderingf is, in factjmore general than Scott’s: For Specker a
partially ordered set (A,>) is a tree partial ordering if it has a
largest element such that the set of nodes at or above any given
node form a chain in which every element of the chain is either the
least element of the chain or else has an immediate predecessor
in the chain. So Specker does not insist on these chains being
finite or even being co-well-ordered.

The class of Specker tree partial crdermgs that have only a
rivial automorphism form the nodes of .
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Specker’s model has quite different properties to Scott’s
model. There is a unique reflexive set in Scott’s model, but there
is a proper class of them in Specker’s model. To see this ob-

serve vidv ‘eac 'oralital’ o adtérmiires the tree partial ordering
(a,>q) € M, where

T>2aY = z<y<a

If the ordinal « is infinite then the tree partial ordering has a
unique child in M which is isomorphic to it, so that it determines
a reflexive set in the model. Moreover distinct infinite ordinals de-
termine non-ispmorphic tree partial orderings and hence distinct
reflexive sets in the model.

The decade starting in 1965 witnessed a flurry of papers on
non-well-founded sets exploiting the model construction tech-
niques initiated by Bernays and Specker. There is (Hajek 1965)
and a series of papers by Boffa listed in the references, as well
as (Felgner 1969). As far as I am aware none of this work con-
siders any strengthening of the extensionality axiom. Perhaps
he highpoint of this period is Boffa’s formulation of his axiom
of superuniversality. This is the axiom that is called BAFA here.
T'he proof in chapter 5 that this axiom has a full model that is
1nique up to isomorphism is different to the original proof given
oy Boffa.

For a useful account of some of the work on non-well-founded
ets up to 1971 see the book (Felgner 1971).

1975~

Boffa’s axiom of superuniversality gave the strongest possible ex-
stence axiom for non-well-founded sets compatible with ZFC~.
Recent years has seen an interest in combining such an existence
ixiom with a strengthening of the extensionality axiom. In par-
icular von Rimscha’s axiom of strong extensionality, Sext, is the
wxiom I have called FAFA;. (See von Rimscha 1981b, 1981c,
1983b.) Von Rimscha considers a variety of universality axioms
ncluding his axiom U1, which is what I have called FAFA;. His
xioms U1 and U4 are called BA; and GA by me. In his series
f papers on non-well-founded sets listed in the references von
limscha explores a variety of other interesting topics that have
10t been taken up here.
vour dlinserlar S axoin Sexe' 18~ Jaseu’ o vile i6rmmiilation of a
otion of isomorphism between sets. As we have seen in this
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book, the axiom of extensionality can be strengthened further
by using the maximal bisimulation relation between sets. The
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B | Background Set Theory

Introduction

The aims of this appendix are to make clear to the reader how
much knowledge of set theory is needed to understand this book,
to catalogue the notation used that may not be standard and to
present a proof of an important result due to Rieger that is not
easily found elsewhere.

The reader will need to have seen somethmg of the devel-
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If Ais a class and I is a set then A’ is the class of all the functions
f:I1-A.
If A is a class of sets then

| |A = {z|z € a for some a5
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Well-Foundedness

A relation R is well-founded if there is no infinite sequence ag,
aj,. .. such that a,+1Ra, for n =0,1,.... A set a is well-founded
if there is no infinite sequence ag, @i, ... such that ap € a and
@nt1 € @y forn =0,1,.... Vi is the class of all the well-founded
sets. |

A class A is transitive if A C powA; i.e. every element of A f
is a subset of A. For transitive classes A we have the following |
principles, provided that the elements of A are all well-founded !
sets. ‘

Set Induction on A:
For any class B if

aCB =—acBforallae A

then A C B.

Set Recursion on A: ’
To uniquely define F : A — V it suffices to define Fa in terms of

F | a for each a € A.
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The Axiomatisation of Set Theory

We take a standard first order language for set theory that just
has the binary predicate symbols ‘=" and ‘€’. We assume a stan-
dard axiomatisation of first order logic with equality. Also we
use the standard abbreviations for the restricted quantifiers

V.’EEa — Vm(zéa—)...)’
Jzea--- = Jz(zeak --).

In the following list of non-logical axioms for ZFC~ we have
avoided the use of any other abbreviations.

Extensionality:
Vz(z€a<—2€b)—a=b
Pairing:
Jz[a€cz&bez]
Union:
Jz(Vz € a)(Vy € z)(y € 2)
Powerset:

AVz[ Vu e z)(u€a) — z € 2]

Infinity:
J2[(Fz € 2)Vy~(y€z) & (Vz € 2)(Ty € 2)(z € ¥) ]

Separation:
Vz[z €2 & T€a&k @]

Collection:
Vzea)dye — Fz(Vzea)Fyez)yp

Choice:

(Vz € a)3y(y € z)

& (Vz1 €a)(Vx2 €a)[Jy(y €21 & y € 22) = 71 =122 ]
—z(Vrea)(Fyez)Vuez)uez—u=y]
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The choice axiom is abbreviated AC. Separation and Collection

i mabcaasoace Ses el




Background Set Theory 119

familiar procedure of defing fu to be the equivalence class of a.
This method works in ZF; i.e. z,}( without FA or AC. For
(—*'gnn'alen(‘v relations on a class A in general there is a trick to
get a quotient, due to Dana .‘ymth that makes essential use of
/';]. The trick is to define fa to be the subset of the equivalence
class {x | zRa} consisting of those elements of the equivalence
class having the least possible rank in the cumulative hierarchy
of well-founded sets. In ZFC~ this trick is no longer available,
but often a slight variation of the trick will work. For example if

2 o v Liabs ur uiedrty oruEleu Sers’ and s’ v Ui prisii

relation between linearly ordered sets then if a € A we can let fa

be the set of linear orderings of the ordinal « that are isomorphic

to the linearly ordered set a, where « is the least possible ordinal

for which there is such a linear ordering of a.. This works because

by AC every set is in one-one correspondence with an ordinal.

Rieger’s Theorem

Here we will prove the result that gives a general method for giv-
ing interpretations of ZFC~. In order to interprete the language
of set theory all that is needed is a class M for the variables
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e Pairing: If a,b € M then ¢ = {a,b} € M is such that
ME(aec&bec).

e Union: Let a € M. Then (J{ym | y € anm} is a subset z of
M50 thaviic = o ek Twlerr B E= VY < avEi Y5 E ¢).
o Powerset: If ¢ € M then ¢ = {mM |2 C aM}M € M is such
that
M EVz[Vzez(z€a) >z EC]

e Infinity: Let
Aq =M
{ Apry = [(Apdar {An})M forn=0,1,...
Then A, € M for each natural number n, so that
Ao={An|n=01..MeM
is such that
ME[A)€ A, & Vy(y € Ao) ]

and
MEVze A,y € Ay(z €y).

e Separation: Let a € M and let ¢ be a formula containing at
most z free and perhaps constants for elements of M. Then

c={bean | MEb/z]}" e M
is such that

MEVz(z€c « z€ak ).

e Collection: Let a € M and let ¢ be a formula containig at
most z and y free and perhaps constants for elements of M.
Suppose that

M =Vz € a3y ¢.

Then

Ve€anyylye M & MEp].
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As bN M is a subset of M we may form ¢ = (bNM)M € M
such that

M EVzeadyeco.
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set continuous, 73 Transitive subsystem, 59
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