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The self energy of a Gaussian Potential Field is employed for the purpose of

nding places in a picture where straight line segments are present. Necessary
conditions are that the gradient of the eld is zero and that the determinant of
the Jacobian matrix is positive at those places.

Gaussian Potential Field

The Gaussian Potential Field is de ned as:
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Where (x,y) = coordinates, k = pixel point, o = spread. Partial derivatives:
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The gradient of the Gaussian Potential Field acts like a force. The magnitude
of this force is \/(c0V/0z)? + (c0V/dy)? . Second order derivatives:
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Abbreviation:

wy = e*%[(l’*mk)2+(y*yk)2]/02

Lemma.
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Proof. This is a direct consequence of Schwartz Inequality:
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Herewith it says:
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The Jacobian matrix at (z,y) is the two-dimensional equialent of the second
order derivative at that place:
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The determinant of the Jacobian matrix (i.e. the Jacobian determinant or the
Jacobian) is:
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Where it has been established that (pzq/tyy — uiy) > 0. An ellipse of inertia
can be determined at places where J > 0 . And the major axis of that ellipse

is the main direction of the pixels there. The characteristic equation for the
eigenvalues \ is:
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Giving as a solution:

Where
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The eigenvectors are found by solving one of the two (dependent) equations, for

example the rst one:
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A solution is:
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Which reduces to:
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The solution with the plus sign (+) in £ is the normal of the direction which
belongs to the greatest eigenvalue. It seems that we are nished herewith, but
this is not the case. A problem is that numerical conditioning can become very
bad with calculating these eigenvectors. A remedy is to use the other of the two
eigenvalue equations in such cases, i.e.:
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Which reduces to:
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Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.



