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Convolution integral

Let f be an integrable function. Consider the fuzzyfied function or fuzzyfication
noted as f, which is defined by the following convolution integral:
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Corrolary. The fuzzyfication f is greater than the function f itself where the
function is convex. The fuzzyfication is smaller than the function itself where
the function is concave.

Theorem.

Proof.
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Corrolary. This means that, nevertheless, the overall behaviour of the fuzzyfi-
cation f is such that being greater or smaller than f is only a local phenomenon
and cancels out globally.

Theorem. For integrable functions f which are bounded :
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Then the derivative of the fuzzyfication is the fuzzyfication of the derivative.
Proof. The other way around:
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Corrolary. The derivative of the fuzzyfication is:
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and can be calculated independent of the derivative f’(x) . Even better. The
fuzzyfication of a function that is not differentiable at all nevertheless shall be
differentiable.

Sampling theorem

It will become clear, in the end, that the theory below may be considered as a
Fuzzy version of the famous Sampling Theorem by Claude Shannon.
Recall the definition of the fuzzyfication f of a function f:
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Definition. The (continuous) Fourier transform of the fuzzyfication is:
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And it will be studied now:
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The exponent of the integral between square brackets [ ] is worked out:
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Proof. According to the above. Not quite unexpected, because the Fourier
transform of a convolution of the functions g and f is equal to the Fourier
transform of ¢ times the Fourier transform of f. And we know that the Fourier

transform of the former is given by exp(f% w?o?) .

It is assumed that the Fourier transform of f is bounded: |F(w)| < M. Gauss
functions are rapidly decreasing for increasing values of their independent vari-
able. Thus w can be chosen in such a way (= wy) that the absolute value of

exp(—3 w?0?) F(w) will become neglectable:

1
eTITYM < e > —Ea%; <In(e/M) <=

0’20.)3 >2In(Mje) <= wyg>+\/2In(M/e) /o



Suppose now that we choose to make a periodic function out of F(w) , simply
by repeating this "pulse” with a period greater than 2.w,. This new function
can be developed into a Fourier Series:
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Where:
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Replacement of [—T/2,+T/2] by [—o0, +0o0] is possible because it is assumed
that the period T is greater than 2wg,. Therefore the extension of the interval
to infinity should provide a contribution which is neglectable. Now remember
the original definition of the (continuous) Fourier transform:

F(w) = /+00 f(x) e ™% da
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It must have an inverse, which is found to be:
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Thus it is seen that:
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We find that the complex conjugate of the (complex) Fourier coefficients (apart

from a constant) is equal to a sampling of the fuzzyfication. For the sampling
frequency 27 /T we find:
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Thus, with such a sampling A, which has to be considered as a discretization
of our continuous fuzzyfication, the Fourier coefficients of a series Fr(w) can
be constructed. Then we extract from the accompanying periodic function only
one period, the function F(w), by simply deleting all periods except one. At
last, this ” central pulse” can be transformed back to the continuous fuzzyfication



itself. We thus find that the fuzzyfication is entirely determined by its sampling,
provided that such a sampling is at intervals smaller than the abovementioned
value, which in turn is related to the spread ¢ by an amount:
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Here €/M is the desired accuracy for exponential (Gauss) functions. It is noticed
that the sampling width A is varying very slowly with the latter quantity while
it is varying linearly with the spread o. Furthermore:
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So, using a sampling distance of less than or equal to half the spread gives rise
to a truncation error which is less than three per billion. Let’s summarize our
findings in a Theorem. Well, later ...
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