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Sharpened Points and Contours

A point in the plane is an idealized pixel, without size. A pixel is a fuzzyfied
point, smeared out over a small domain in the plane. Cast in more mathematical
terms: a point at (p,q) is a delta function at that place. The fuzzyfication of
that point, the pixel, can be modelled by a 2-D bell shaped function, which is
centered at (p, q):
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The point can be fuzzyfied to a pixel and the pixel can be sharpened to a point.
The latter is accomplished by a limit where the spread called o becomes zero:
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The above becomes somewhat less trivial as soon as (the fuzzyfication of) a
point is integrated over a certain area, which is enclosed by a contour curve:

//5(96*19,ny) dx dy

The outcome of this integral depends on whether the point (p, ¢) is inside or
outside the contour curve which encloses the area. In the former case it is
obviously one, in the latter case it is zero:

//5(m—p,y—q)dxdy:{ (1) if (p,q) inside

outside

If the delta function is ”cut into pieces”, which happeuns if (p, ¢) is exactly at the
boundary curve, then the outcome of the integral is a undefined value, though
somewhere between 0 and 1. But let’s discard this special case for the moment
being. And consider instead the fuzzyfication of the above:
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According to Green’s Theorem, any such area integral may be converted into a
contour integral. As follows:

//(%?%D) dxdy:]{(de—dey)

Where the line integral must be evaluated along the contour enclosing the area of
interest. Converting a line integral into an area integral is easy. But the reverse,
converting an area integral into a line integral, requires some more ingenuity.
In our case, though, there exists more than one possibility to do it. We opt for
the following. Let the function P(z,y) be zero everywhere and let the function
Q(z,y) be defined by:
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Which is exactly what we want. Now the result of Green’s Theorem becomes:

2Q - — r=pr 1 —1(y—q)?/c?
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In the limiting case, when ¢ — 0 , the exponential function becomes a delta
function and the Erf function becomes an integrated delta function, namely the
Heaviside function. Thus we find:

lir% Brf (mp) 1 e 3Ww—a)?/a* dy:jéH(x_p)a(y—q)dy

o o2

But there are a myriad other ways to look at the integral:
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For example, take the origin of your coordinates at (p,q) = (0,0) and replace
the Cartesian (z,y) system by polar coordinates (7, ¢) :
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The latter integral can be evaluated as follows:
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If we take the limit for o — 0 of the integral between square brackets, then it
is reduced to unity:
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Here R denotes the distance of the boundary curve to the origin. If it may
be assumed that the origin is distinct from the boundary, then for ¢ — 0 the
quotient R/c approaches infinity and the exponential function becomes zero
indeed. So we are left with:
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Where the integral at the right is recognized as the winding number of the curve

enclosing the area of interest. This leads to the following concise conclusion:
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Where the point of interest, formerly called (p, ) , is identified with the origin
(0,0) on a permanent basis. T feel that this conclusion is valid for an arbitrary
bunch of mutually and eventually self-intersecting closed curves. With the sole
condition that the origin is not coincident with any place on these.

The rest of the story is technology, not a theory. I want to spend a few words on
it, though. The integral with H(x) and §(y) in it is actually equivalent with the
following well-known statement. Draw a line from the point of interest P, in the
positive x-direction, towards infinity. Then count the number of intersections of
that line with the curves that form the boundary of the area of interest A. If the
number of intersections is odd then P is inside A. If the number of intersections
is even then P is outside A. However, the technical implementation of this is
far more tricky that one might expect. Special cases like being smaller (<),
equal (=) or greater (>) than zero should be distinguished carefully, eventually
resulting in 32 x 32 = 81 different combinations (!). It should be mentioned, as
well, that the Heaviside function H (z) algorithmically means that the infamous
clipping problem (see: Computer Graphics) has an instance at « = 0. Last but
not least, if you really want to improve efficiency, then a sorting and searching
problem with respect to the y-coordinates will become part of the project.



Fuzzyfication of Line Segments
Let the line segment I between (xq,yo) and (21,y1) be given by:
x(t) =xo+ (r1 — 20).t and y(t) =yo+ (y1 — yo).t where: 0<t<1

The fuzzyfied line segment L is defined by a convolution integral of [ with the
standard normal distribution, in two dimensions:
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Here i(z,y) denotes the line segment. It is advantageous to introduce other
coordinates, which are associated with [ itself. The parameter t is one of these
coordinates. Let the thickness of the line segment be denoted by D and the
length measured along [ with s, then s = t.\/(z1 — 20)% + (y1 — yo)? and:

E=x0+ (1 —z0).t n=1yo+ (y1 — yo)-t

dé.dn = D.ds = D\/(x1 — 20)2 + (y1 — yo)2 dt

Furthermore, the function I(x,y) has a value 1 at the line segment (and 0 ev-
erywhere else). Herewith, the double integral becomes:
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So that is what we have to calculate. Start rewriting the exponent:

[0 + (21 — w0).t — 21” + [(yo + (y1 — o).t — ) =

(21 = 20)” + (1 = 20)%] 4% = 2. [(& = w0} (@1 = @0) + (v = 0) (1 = )] ¢
+ [(x —20)® + (y — y0)?] = At? —2.Bt+C

Where:
A= (z1—20)®+ (y1 — 0)?
B = (x —x0)(21 — x0) + (¥ — ¥0)(¥1 — %0)
C = (x—0)*+ (y — v0)?

Write as follows: A.t2 —2.Bt+C =

2 2 2 2
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A A = A
Simplify with:

X=z—x0 Y=y—1wo X1=21—20 Yi=y1—wo



Giving:
B%— A.C = [(z — o) (21 — z0) + (y — ¥0)(y1 — o))’
— (21 = 20)* + (11 — 90)?] [(= — 20)? + (¥ — 0)?]
= (X. X1 +Y.Y)2 - (X1 +V1)3(X2+Y?)
= X2 X242 XX .Y Y + Y2V - X2 X2 - X2Y? V2 X2 —Y2AY?
= —X2Y2 42X, YY1 X - V2 X2 = — (XY —Y;.X)?

B2—AC _ [(z1—0)(y — o) — (1 — yo)(x — z0)]”

A (r1 —20)? + (Y1 — Y0)?
Herewith the exponent becomes: A.t? —2.B.t+ C =
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Define position vectors:

7= (r,y)  70o=(To,y0) 1 =(21,7)
Inner products (-) and the absolute value of an outer product (x) may be easily
recognized:
(# —xo)(x1 — 20) + (¥ — o) (1 — yo) = (P — 70 -7 — 7
(z1 —20)* + (Y1 — w0)* = (F1 — 7 - ™1 — 7o)
(21— 20)(y — yo) — (Y1 — wo)(z — o) = |
Herewith: A.t> —2.B.t+C =
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Rewrite:
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Thus, the exponential function splits up into a part which is quite independent
of the running parameter ¢ and another part which is still dependent on it. Only
the latter has to be integrated further, of course. For that purpose, introduce a
new variable wu:

And the integral becomes:
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Summarizing:
Uy = (f - 707 7) and u; = — (7o)

0\/(F1—F0-F1—F0) 0\/(F1—F0-F1—F0)

The integral over a normal distribution can always be expressed as the sum of
two error functions, where the ERror Function (Erf) is defined as:

1 z 1,2 1 Yy s
Erf(x) = —/ e dt = —/ e 2" du = Erf(uy) — Erf(up)
V 21 —0 Vv 2w ()
Thus, with the values involved, the integral to be calculated turns out to be

equal to:
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——— [Erf(—wo) — Erf(—u1)] = —————
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[Erf(uy) — Erf(uo)] =




There are two factors in front of the end result, which partly cancel out:

1 oV 2w D
D.\/(F1 — o -7 — 74 =
902 \/(7“1 To-T1 7“0)

\/(Fl—Fo-Fl—Fo) O’\/27T
Therefore the final result must read:

D N .
L(z,y) = — e 31 —0) x (=70) [/ (P —To-71 7o) } /0@

Erf (7“1_‘— 7’0_‘- 7 j ro)_’ B (7“1_‘— ro_;- 7 : rl)_’
U\/(rl—ro-rl—ro) a\/(rl—ro-rl—ro)

Having arrived at the end of the story, let’s put everything the other way around.
Instead of fuzzying a line segment, leave it as it is. Consider instead the influence
of a fuzzy point in the plane upon an exact line segment, that is: integrate the
bell shaped function emp(—%(f2 +n?)/0?) of the fuzzy pixel over all points of
the line segment. Here £ and 7 are the components of the vector joining the
pixel with any point of the line segment. Setting up the mathematics results in:
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\/(Il —x0)? 4+ (y1 — %0)?

. /1 e—%{[900+(901—xo)-t—$]2+[y0+(y1—yo)-t—y]z}/Uz dt
0

Apart from a constant factor, this is completely equivalent with working the
other way around. So it makes hardly any difference, if at all, whether a fuzzy
line segment is sensed by an exact pixel or whether a fuzzy pixel is sensed by
an exact line segment. Thus it makes no difference whether the theory or the
experiment is fuzzyfied, as long as one of both is the fuzzy one.

Fuzzyfied Lines Unclipped

The final formula from the previous paragraph is repeated here for convenience:

L(z,y) = (,«D@T e~ I -T) X (0) F /(T —70) }

E’f' f (’F‘l_’i FO_: ,F: FO )_’ _ E’f' f (Fl_’i FO_: T_’: Fl )_’
0\/(1“1—1“0-7‘1—7"0) a\/(rl—ro-rl—ro)

There exists a sensible interpretation of the factor with the error functions:




According to the theory of inner products, these terms denote a projection, along
the line segment (77 — 7p), of the vectors joining the point 7 in the plane, with
the startpoint 75 or endpoint 7, respectively. This could also be expressed as
follows:

(_’1—_’0'77—_’1) _
\/771*_’0'7?1*_’0) \/(7“1*7"0'_'1*_’0) \/(_'1*_’0'_’1*_’0)

Where S = /(1 — 7 - 71 — 7o) is the total length of the segment. Thinking in
this way results in a term:

[Erf(s) — Erf(s = 5)]

The difference of the two error functions assumes the value 1 for most of the
line segment L. The FErf() part assumes appreciably different values only in
the neighbourhood of the start- and endpoints. That is, if the projection of
the point in the plane upon the segment [ gives rise to a distance, measured
along the segment, of less than a few times the spread, from the end-points
(70,71). This is one reason why the term with the Erf() functions is relatively
less important and can be set to 1 in many cases. To put it in different terms,
instead of integrating the line segment over its finite length, it could be decided
to extend the integration interval to infinity. This corresponds with (s,s—S5) =
(400, —00). For these values of s, it is known that Erf(s) = 1 and Erf(s—S) = 0.
With infinite length, only the length independent part of the problem is left.
However, in order to get rid of the Erf() terms, there is no need to go all the way
to infinity. Instead, it is sufficient to restrict the area of interest to a domain
which is sufficiently far away from the end-points of the straight line segments.
Here, sufficiently far away may be conveniently defined as a couple of times the
value of the spread. A nice (and easy to remember) value is with 27 :

Ire = e 3(20)/0 — =27 (1 2 67528799107424. 10 7))

One way to accomplish things is to augment the area of interest with a kind
of sufficiently wide margin, where the width of the margin may be equal to,
for example, the above 2wro . Anyway, it’s not very difficult to eliminate, in
practice, the factor with the Erf() terms in it. And we find the fuzzyfication of
a straight line, unfinished, unclipped:

D 1 = = = = 2 — JER — 2
L(z,y) = ——— . ¢~ 3{|F1=T0)x(F=70)|*/(F1—T0-71—70) } /o
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Where:
B |(z — 20)(y1 — yo) — (z1 — 20)(y — o)l

V(@1 = 20)% + (y1 — y0)?

A lucid interpretation for the latter quantity does also exist. The nominator is
equal to the absolute value of the outer product (73 — 7) X (F — 7g) . This, in
turn, is equal to the area of the paralellogram which is spanned by the vectors
(71 — 7o) and (F — 7y) . The paralellogram can be divided in two congruent
triangles: (7,71, 7) and (7, 71,71 + 7 — 7). These two triangles divide the area
of the paralellogram in two equal halves. Each of the two halves is equal to half
the height H of the triangles times the length of the line segment. Formally:

(71 = 70) x (7' = 70)|
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The height H of the triangle (7o, 71, 7) is precisely the length of the perpendicular
from top 7 to base (7, 71). With other words, it is precisely the distance from a
point (z,y) to the line segment (xg,yo) — (x1,y1). Herewith we can write, less
formally, for the fuzzyness of a straight line without the end-points:

thick : .
L(z,y) ~ ﬁe—%(dlﬁance/gpread)

Still another way of looking at the above is the following. First repeat:

B |(z = 20)(y1 — yo) — (¥1 — 20) (¥ — yo)|
V(@1 —20)% + (Y1 — v0)?

The unit normal (n,, n,) of the line (x — 20)(y1 — ¥o) — (€1 — 20)(y —yo) =0
is recognized herein:

1 { +(y1 — vo) } _ [ cos(0) ]

[%}‘¢m—%ﬁ+@—%v (a1 —0) | ~ | sin(0)

Here 6 is the angle of the normal of the straight line segment with the x-axis.
The distance of a point (x,y) to the line B = 0 is precisely the length of the
projection of (x—xzq,y—yo) on the normal (cos(f), sin()) , which is just another
(and easier) way to obtain the above results again. This results in a slightly
different expression for the exponent in the exponential:

B = cos(0)(z — x0) + sin(0)(y — yo) =
D
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L(z,y) = e~ 3lcos(0)(z—x0)+sin(0) (y—yo)]*/o*

So far so good. What will happen if we integrate the complete function L(z,y),
of the finite line segment, with the end-points, over the whole plane 7 It is



rather advantageous then to replace the infinitesimal volume dx dy by another
infinitesimal volume ds dH , where H is the distance to the line and s is the length
of the arc measured along the line. The Jacobian determinant corresponding
with this orthogonal coordinate transformation is just 1. And:

//L(x,y) dxdy://L(s,H) dsdH =

i E ) ds. —2 [T ke g — s
| e~ s sy as. = [ s

That the first integral is indeed equal to S can be demonstrated with help of a
suitable picture of the Erf() functions. The outcome of the latter integral is well
known from the theory of normal distributions. Anyway, the result is: length
times width, which simply is the area (or number of pixels eventually) occupied
by the line segment. A normalized line shall be defined with a thickness D equal
to unity and a length S marginally extending to infinity. This is our end-result:

]. : 2 2
L(ay) = —= o~ blcos(8) (o) +sin(0) (y—yo)]* /o

Sharpened Lines and Contours

It happens that the fuzzyfied equation of a straight line (segment) has to be
integrated over all (black) pixels in its neighbourhood, resulting in a double
integral, which is quite intensive to compute numerically:
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A well known trick is to convert such an area integral into a line integral, the
objective being to save an order of magnitude in computing time. This can be
accomplished once again with help of Green’s Theorem:

[ (52 -5) wee-



Resulting indeed in the correct integrand for the area integral:

0Q_or_ 1
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o~ 3lcos(9)(@—p)+sin(¢)(y—q)]*/o” [cos®(¢) + sin®()]

Because cos®(¢) + sin?(¢) = 1 . Hence it may be concluded that the equivalent
line integral is given by:

j[(PdaH—Qdy):

7{ Brf {COS((b)(x —p) +sin(o)(y — Q)}

[—sin(¢) d + cos(6) dy]

Where [—sin(¢) dx + cos(¢) dy] denote increments along the contour, as they
are (counter-clockwise) projected in the direction of the straight line. The last
step is to take the limit of the above expression for ¢ — 0 . This results in an
integral over a Heaviside function which is discontinuous just where the straight
line is / a Heaviside which is jumping over the straight line - so to speak:

74 H [cos(6)(z — p) + sin(d)(y — a)] [—sin(@) dz + cos(d) dy]

The outcome of this integral will be the length of the straight line, insofar as it
is (covered by the area of interest, which in turn is) enclosed by the contours of
the boundary integral ¢. The rest of the story should be considered again as a
technology, not a theory. But I want to spend a few words on this one as well.
The Heaviside function in the abovementioned integral implies again a clipping
problem. But we are not finished with just one of these. As any straight line
will eventually be restricted to a line segment with finite length, this will give
rise to three subsequent clipping problems: one for the line segment itself and
two for the lines perpendicular to the segment at its end points.

Disclaimers

Anything free comes without referee :-(
Succinctness is not my strongest quality.
My English may be better than your Dutch.
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